login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A087498
Decimal expansion of Khinchin mean K_{-8}.
10
1, 1, 1, 5, 9, 6, 4, 4, 0, 8, 9, 7, 8, 7, 1, 6, 6, 9, 0, 6, 1, 9, 1, 5, 6, 4, 1, 9, 3, 4, 5, 3, 4, 9, 6, 9, 5, 7, 6, 9, 4, 9, 1, 1, 8, 2, 2, 3, 0, 4, 0, 0, 9, 3, 7, 0, 6, 3, 5, 3, 3, 1, 1, 0, 0, 3, 3, 7, 0, 9, 5, 7, 5, 0, 5, 0, 2, 0, 3, 1, 1, 8, 9, 1, 5, 0, 1, 1, 3, 9, 6, 4, 6, 7, 1, 5, 1, 7, 0, 0
OFFSET
1,4
COMMENTS
Khinchin's constant is K_0.
LINKS
Eric Weisstein's World of Mathematics, Khinchin's Constant
EXAMPLE
1.11596440...
MATHEMATICA
m = 8; digits = 100; exactEnd = 1000; f[n_] = -(Log[1 - (1 + n)^(-2)]/(n^m*Log[2])); s[n_] = Series[f[n], {n, Infinity, digits}] // Normal // N[#, digits]&; exactSum = Sum[f[n], {n, 1, exactEnd}] // N[#, digits]&; extraSum = Sum[s[n], {n, exactEnd + 1, Infinity}] // N[#, digits]&; (exactSum + extraSum)^(-1/m) // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 14 2013 *)
KEYWORD
nonn,cons
AUTHOR
Eric W. Weisstein, Sep 09 2003
EXTENSIONS
More terms from Jean-François Alcover, Feb 14 2013
STATUS
approved