login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A073003 Decimal expansion of -exp(1)*Ei(-1), also called Gompertz's constant, or the Euler-Gompertz constant. 20
5, 9, 6, 3, 4, 7, 3, 6, 2, 3, 2, 3, 1, 9, 4, 0, 7, 4, 3, 4, 1, 0, 7, 8, 4, 9, 9, 3, 6, 9, 2, 7, 9, 3, 7, 6, 0, 7, 4, 1, 7, 7, 8, 6, 0, 1, 5, 2, 5, 4, 8, 7, 8, 1, 5, 7, 3, 4, 8, 4, 9, 1, 0, 4, 8, 2, 3, 2, 7, 2, 1, 9, 1, 1, 4, 8, 7, 4, 4, 1, 7, 4, 7, 0, 4, 3, 0, 4, 9, 7, 0, 9, 3, 6, 1, 2, 7, 6, 0, 3, 4, 4, 2, 3, 7 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

0! - 1! + 2! - 3! + 4! - 5! + ... = (Borel) Sum_{n>=0} (-y)^n n! = KummerU(1,1,1/y)/y.

Decimal expansion of phi(1) where phi(x) = Integral_{t>=0} e^-t/(x+t) dt. - Benoit Cloitre, Apr 11 2003

The divergent series g(x=1,m) = 1^m*1! - 2^m*2! + 3^m*3! - 4^m*4! + ..., m => -1, is intimately related to Gompertz's constant. We discovered that g(x=1,m) = (-1)^m * (A040027(m) - A000110(m+1) * A073003) with A000110 the Bell numbers and A040027 a sequence that was published by Gould, see for more information A163940. - Johannes W. Meijer, Oct 16 2009

Named by Le Lionnais (1983) after the English self-educated mathematician and actuary Benjamin Gompertz (1779 - 1865). It was named the Euler-Gompertz constant by Finch (2003). Lagarias (2013) noted that he has not located this constant in Gompertz's writings. - Amiram Eldar, Aug 15 2020

REFERENCES

Bruce C. Berndt, Ramanujan's notebooks Part II, Springer, p. 171

Bruce C. Berndt, Ramanujan's notebooks Part I, Springer, p. 144-145.

S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 424-425.

Francois Le Lionnais, Les nombres remarquables, Paris: Hermann, 1983. See p. 29.

H. S. Wall, Analytic Theory of Continued Fractions, Van Nostrand, New York, 1948, p. 356.

LINKS

Robert Price, Table of n, a(n) for n = 0..10000

A. I. Aptekarev, On linear forms containing the Euler constant, arXiv:0902.1768 [math.NT], 2009. [From R. J. Mathar, Feb 14 2009]

Richard P. Brent, M. L. Glasser, Anthony J. Guttmann, A Conjectured Integer Sequence Arising From the Exponential Integral, arXiv:1812.00316 [math.NT], 2018.

G. H. Hardy, Divergent Series , Oxford University Press, 1949. p. 29. - Johannes W. Meijer, Oct 16 2009

Jeffrey C. Lagarias, Euler's constant: Euler's work and modern developments, Bull. Amer. Math. Soc., Vol. 50, No. 4 (2013), pp. 527-628, preprint, arXiv:1303.1856 [math.NT], 2013.

István Mezo, Gompertz constant, Gregory coefficients and a series of the logarithm function, Journal of Analysis & Number Theory, Vol. 2, No. 2 (2014), pp. 33-36.

Simon Plouffe, -exp(1)*Ei(-1)

Tanguy Rivoal, On the arithmetic nature of the values of the gamma function, Euler's constant, and Gompertz's constant, Michigan Math. J., Vol. 61, No. 2 (2012), pp. 239-254.

Ed Sandifer, Divergent Series, How Euler Did It, MAA Online, June 2006. - Johannes W. Meijer, Oct 16 2009

Eric Weisstein's World of Mathematics, Gompertz Constant

Eric Weisstein's World of Mathematics, Exponential Integral

FORMULA

phi(1) = e*(Sum_{k>=1} (-1)^(k-1)/(k*k!) - Gamma) = 0.596347362323194... where Gamma is the Euler constant.

G = 0.596347... = 1/(1+1/(1+1/(1+2/(1+2/(1+3/(1+3/(1+4/(1+4/(1+5/(1+5/(1+6/(... - Philippe Deléham, Aug 14 2005

Equals A001113*A099285. - Johannes W. Meijer, Oct 16 2009

From Peter Bala, Oct 11 2012: (Start)

Stieltjes found the continued fraction representation G = 1/(2 - 1^2/(4 - 2^2/(6 - 3^2/(8 - ...)))). See [Wall, Chapter 18, (92.7) with a = 1]. The sequence of convergents to the continued fraction begins [1/2, 4/7, 20/34, 124/209, ...]. The numerators are in A002793 and the denominators in A002720.

Also, 1 - G has the continued fraction representation 1/(3 - 2/(5 - 6/(7 - ... -n*(n+1)/((2*n+3) - ...)))) with convergents beginning [1/3, 5/13, 29/73, 201/501, ...]. The numerators are in A201203 (unsigned) and the denominators are in A000262.

(End)

G = f(1) with f solution to the o.d.e. x^2*f'(x) + (x+1)*f(x)=1 such that f(0)=1. - Jean-François Alcover, May 28 2013

From Amiram Eldar, Aug 15 2020: (Start)

Equals Integral_{x=0..1} 1/(1-log(x)) dx.

Equals Integral_{x=1..oo} exp(1-x)/x dx.

Equals Integral_{x=0..oo} exp(-x)*log(x+1) dx.

Equals Integral_{x=0..oo} exp(-x)/(x+1) dx. (End)

Equals lim_{n->infinity} A040027(n)/A000110(n+1). - Vaclav Kotesovec, Feb 22 2021

EXAMPLE

0.59634736232319407434107849936927937607417786015254878157348491...

MATHEMATICA

RealDigits[N[-Exp[1]*ExpIntegralEi[-1], 105]][[1]]

G = 1/Fold[Function[2*#2 - #2^2/#1], 2, Reverse[Range[10^4]]] // N[#, 105]&; RealDigits[G] // First (* Jean-François Alcover, Sep 19 2014 *)

PROG

(PARI) eint1(1)*exp(1) \\ Charles R Greathouse IV, Apr 23 2013

(MAGMA) SetDefaultRealField(RealField(100)); ExponentialIntegralE1(1)*Exp(1); // G. C. Greubel, Dec 04 2018

(Sage) numerical_approx(exp_integral_e(1, 1)*exp(1), digits=100) # G. C. Greubel, Dec 04 2018

CROSSREFS

Cf. A000522 (arrangements), A001620, A000262, A002720, A002793, A058006 (alternating factorial sums), A153229, A201203, A283743 (Ei(1)/e).

Sequence in context: A051158 A117605 A303983 * A087498 A274633 A238200

Adjacent sequences:  A073000 A073001 A073002 * A073004 A073005 A073006

KEYWORD

cons,nonn

AUTHOR

Robert G. Wilson v, Aug 03 2002

EXTENSIONS

Additional references from Gerald McGarvey, Oct 10 2005

Link corrected by Johannes W. Meijer, Aug 01 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 15 06:12 EDT 2021. Contains 342975 sequences. (Running on oeis4.)