

A073003


Decimal expansion of exp(1)*Ei(1), also called Gompertz's constant, or the EulerGompertz constant.


15



5, 9, 6, 3, 4, 7, 3, 6, 2, 3, 2, 3, 1, 9, 4, 0, 7, 4, 3, 4, 1, 0, 7, 8, 4, 9, 9, 3, 6, 9, 2, 7, 9, 3, 7, 6, 0, 7, 4, 1, 7, 7, 8, 6, 0, 1, 5, 2, 5, 4, 8, 7, 8, 1, 5, 7, 3, 4, 8, 4, 9, 1, 0, 4, 8, 2, 3, 2, 7, 2, 1, 9, 1, 1, 4, 8, 7, 4, 4, 1, 7, 4, 7, 0, 4, 3, 0, 4, 9, 7, 0, 9, 3, 6, 1, 2, 7, 6, 0, 3, 4, 4, 2, 3, 7
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

0!  1! + 2!  3! + 4!  5! + ... = (Borel) sum_{n>=0} (y)^n n! = KummerU(1,1,1/y)/y.
Decimal expansion of phi(1) where phi(x)=integral(t=0,infinity, e^t/(x+t) dt ).  Benoit Cloitre, Apr 11 2003
The divergent series g(x=1,m) = 1^m*1!  2^m*2! + 3^m*3!  4^m*4! + ... , m=>1, is intimately related to Gompertz's constant. We discovered that g(x=1,m) = (1)^m * (A040027(m)  A000110(m+1) * A073003) with A000110 the Bell numbers and A040027 a sequence that was published by Gould, see for more information A163940.  Johannes W. Meijer, Oct 16 2009
The second part of Lagarias (2013) describes various mathematical developments involving Euler's constant, as well as another constant, the EulerGompertz constant.  Jonathan Vos Post, Mar 13 2013


REFERENCES

Bruce C. Berndt, Ramanujan's notebooks Part II, Springer, p. 171
Bruce C. Berndt, Ramanujan's notebooks Part I, Springer, p. 144145.
S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 424425.
Wall, H. S., Analytic Theory of Continued Fractions, Van Nostrand, New York, 1948, p. 356


LINKS

Robert Price, Table of n, a(n) for n = 0..10000
A. I. Aptekarev, On linear forms containing the Euler constant, arXiv:0902.1768 [math.NT]. [From R. J. Mathar, Feb 14 2009]
G. H. Hardy, Divergent Series , Oxford University Press, 1949. p. 29.  Johannes W. Meijer, Oct 16 2009
Jeffrey C. Lagarias, Euler's constant: Euler's work and modern developments, Bull. Amer. Math. Soc., 50 (2013), 527628.
Simon Plouffe, exp(1)*Ei(1)
Ed Sandifer, Divergent Series, How Euler Did It, MAA Online, June 2006.  Johannes W. Meijer, Oct 16 2009
Eric Weisstein's World of Mathematics, Gompertz Constant
Eric Weisstein's World of Mathematics, Exponential Integral


FORMULA

phi(1) = e*(sum(k>=1, (1)^(k1)/k/k!)  Gamma) = 0.596347362323194... where Gamma is the Euler constant.
G = 0.596347... = 1/(1+1/(1+1/(1+2/(1+2/(1+3/(1+3/(1+4/(1+4/(1+5/(1+5/(1+6/(...  Philippe Deléham, Aug 14 2005
From Peter Bala, Oct 11 2012: (Start)
Stieltjes found the continued fraction representation G = 1/(2  1^2/(4  2^2/(6  3^2/(8  ...)))). See [Wall, Chapter 18, (92.7) with a = 1]. The sequence of convergents to the continued fraction begins [1/2, 4/7, 20/34, 124/209, ...]. The numerators are in A002793 and the denominators in A002720.
Also, 1  G has the continued fraction representation 1/(3  2/(5  6/(7  ... n*(n+1)/((2*n+3)  ...)))) with convergents beginning [1/3, 5/13, 29/73, 201/501, ...]. The numerators are in A201203 (unsigned) and the denominators are in A000262.
(End)
G = f(1) with f solution to the o.d.e. x^2*f'(x)+(x+1)*f(x)=1 such that f(0)=1.  JeanFrançois Alcover, May 28 2013


EXAMPLE

0.59634736232319407434...


MATHEMATICA

RealDigits[N[Exp[1]*ExpIntegralEi[1], 105]][[1]]
G = 1/Fold[Function[2*#2  #2^2/#1], 2, Reverse[Range[10^4]]] // N[#, 105]&; RealDigits[G] // First (* JeanFrançois Alcover, Sep 19 2014 *)


PROG

(PARI) eint1(1)*exp(1) \\ Charles R Greathouse IV, Apr 23 2013


CROSSREFS

Equals A001113*A099285.  Johannes W. Meijer, Oct 16 2009
Cf. A001620, A000262, A002720, A002793, A153229, A201203.
Sequence in context: A134879 A051158 A117605 * A087498 A238200 A201589
Adjacent sequences: A073000 A073001 A073002 * A073004 A073005 A073006


KEYWORD

cons,nonn


AUTHOR

Robert G. Wilson v, Aug 03 2002


EXTENSIONS

Additional references from Gerald McGarvey, Oct 10 2005
Link corrected by Johannes W. Meijer, Aug 01 2009


STATUS

approved



