login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A087491
Decimal expansion of the Khinchin harmonic mean K_{-1}.
11
1, 7, 4, 5, 4, 0, 5, 6, 6, 2, 4, 0, 7, 3, 4, 6, 8, 6, 3, 4, 9, 4, 5, 9, 6, 3, 0, 9, 6, 8, 3, 6, 6, 1, 0, 6, 7, 2, 9, 4, 9, 3, 6, 6, 1, 8, 7, 7, 7, 9, 8, 4, 2, 5, 6, 5, 9, 5, 0, 1, 3, 7, 7, 3, 5, 1, 6, 0, 7, 8, 5, 7, 5, 2, 2, 0, 8, 7, 3, 4, 2, 5, 6, 5, 2, 0, 5, 7, 8, 8, 6, 4, 5, 6, 7, 8, 3, 2, 4, 2, 4, 2
OFFSET
1,2
COMMENTS
Khinchin's constant is K_0 (A002210).
REFERENCES
Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.8, p. 61.
LINKS
Eric Weisstein's World of Mathematics, Khinchin's Constant.
Eric Weisstein's World of Mathematics, Khinchin Harmonic Mean.
FORMULA
Equals (Sum_{n>=1} -log2(1 - 1/(n+1)^2) * n^(-1))^(-1). - Jianing Song, Aug 08 2021
EXAMPLE
1.7454056624073468634945963096836610672949366187...
MATHEMATICA
digits = 102; exactEnd = 1000; f[n_] = (1 - 1/(n + 1)^2)^(-1/n); s[n_] = Series[Log[f[n]], {n, Infinity, digits}] // Normal // N[#, digits] &; exactSum = Sum[Log[f[n]], {n, 1, exactEnd}] // N[#, digits] &; extraSum = Sum[s[n], {n, exactEnd + 1, Infinity}] // N[#, digits] &; A087491 = Log[2]/(exactSum + extraSum) // RealDigits // First (* Jean-François Alcover, Feb 06 2013 *)
RealDigits[Log[2]/NSum[Log[(1 - 1/(n + 1)^2)^(-1/n)], {n, Infinity}, NSumTerms -> 10^4, WorkingPrecision -> 250, PrecisionGoal -> 110]][[1, ;; 100]] (* Eric W. Weisstein, Dec 10 2017 *)
KEYWORD
nonn,cons
AUTHOR
Eric W. Weisstein, Sep 09 2003
STATUS
approved