This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A087491 Decimal expansion of the Khinchin harmonic mean K_{-1}. 11
 1, 7, 4, 5, 4, 0, 5, 6, 6, 2, 4, 0, 7, 3, 4, 6, 8, 6, 3, 4, 9, 4, 5, 9, 6, 3, 0, 9, 6, 8, 3, 6, 6, 1, 0, 6, 7, 2, 9, 4, 9, 3, 6, 6, 1, 8, 7, 7, 7, 9, 8, 4, 2, 5, 6, 5, 9, 5, 0, 1, 3, 7, 7, 3, 5, 1, 6, 0, 7, 8, 5, 7, 5, 2, 2, 0, 8, 7, 3, 4, 2, 5, 6, 5, 2, 0, 5, 7, 8, 8, 6, 4, 5, 6, 7, 8, 3, 2, 4, 2, 4, 2 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Khinchin's constant is K_0. LINKS Eric Weisstein's World of Mathematics, Khinchin's Constant Eric Weisstein's World of Mathematics, Khinchin Harmonic Mean EXAMPLE 1.74540566... MATHEMATICA digits = 102; exactEnd = 1000; f[n_] = (1 - 1/(n + 1)^2)^(-1/n); s[n_] = Series[Log[f[n]], {n, Infinity, digits}] // Normal // N[#, digits] &; exactSum = Sum[Log[f[n]], {n, 1, exactEnd}] // N[#, digits] &; extraSum = Sum[s[n], {n, exactEnd + 1, Infinity}] // N[#, digits] &; A087491 = Log[2]/(exactSum + extraSum) // RealDigits // First  (* Jean-François Alcover, Feb 06 2013 *) RealDigits[Log[2]/NSum[Log[(1 - 1/(n + 1)^2)^(-1/n)], {n, Infinity}, NSumTerms -> 10^4, WorkingPrecision -> 250, PrecisionGoal -> 110]][[1, ;; 100]] (* Eric W. Weisstein, Dec 10 2017 *) CROSSREFS Cf. A002210, A087491, A087492, A087493, A087494, A087495, A087496, A087497, A087498, A087499, A087500. Sequence in context: A180078 A019685 A208899 * A019899 A085662 A155684 Adjacent sequences:  A087488 A087489 A087490 * A087492 A087493 A087494 KEYWORD nonn,cons AUTHOR Eric W. Weisstein, Sep 09 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 24 06:56 EDT 2019. Contains 321444 sequences. (Running on oeis4.)