login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A086456 Expansion of (1 + x + sqrt(1 - 6*x + x^2))/2 in powers of x. 4
1, -1, -2, -6, -22, -90, -394, -1806, -8558, -41586, -206098, -1037718, -5293446, -27297738, -142078746, -745387038, -3937603038, -20927156706, -111818026018, -600318853926, -3236724317174, -17518619320890, -95149655201962 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Series reversion of x(Sum_{k>=0} a(k)x^k) is x(Sum_{k>=0} A003168(k)x^k).

G.f. A(x) = Sum_{k>=0} a(k)x^k satisfies 0 = 2*x - (x + 1)*A(x) + A(x)^2.

LINKS

Table of n, a(n) for n=0..22.

Foissy, Loic, Algebraic structures on double and plane posets, J. Algebr. Comb. 37, No. 1, 39-66 (2013).

FORMULA

G.f.: (1 + x + sqrt(1 - 6*x + x^2))/2. (= 1/g.f. A001003)

D-finite: n*a(n) + 3*(-2*n + 3)*a(n-1) + (n-3)*a(n-2) = 0. - R. J. Mathar, Jul 23 2017

MATHEMATICA

ReciprocalSeries[ser_, n_] := CoefficientList[ Series[1/ser, {x, 0, n}], x];

LittleSchroeder := (1 + x - Sqrt[1 - 6 x + x^2])/(4 x); (* A001003 *)

ReciprocalSeries[LittleSchroeder, 22] (* Peter Luschny, Jan 10 2019 *)

PROG

(PARI) a(n)=polcoeff((1+x+sqrt(1-6*x+x^2+x*O(x^n)))/2, n)

CROSSREFS

A minor variation of A006318. a(n)=-A006318(n-1), n>0. a(n)=A085403(n), n>1.

Cf. A001003.

Sequence in context: A165523 A049126 A049134 * A155069 A006318 A103137

Adjacent sequences:  A086453 A086454 A086455 * A086457 A086458 A086459

KEYWORD

sign

AUTHOR

Michael Somos, Jul 20 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 17 16:08 EST 2019. Contains 329241 sequences. (Running on oeis4.)