login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A084920 a(n) = (prime(n)-1)*(prime(n)+1). 23
3, 8, 24, 48, 120, 168, 288, 360, 528, 840, 960, 1368, 1680, 1848, 2208, 2808, 3480, 3720, 4488, 5040, 5328, 6240, 6888, 7920, 9408, 10200, 10608, 11448, 11880, 12768, 16128, 17160, 18768, 19320, 22200, 22800, 24648, 26568, 27888, 29928 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Squares of primes minus 1. - Wesley Ivan Hurt, Oct 11 2013

Integers k for which there exist exactly two positive integers b such that (k+1)/(b+1) is an integer. - Benedict W. J. Irwin, Jul 26 2016

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..10000

N. Lygeros, O. Rozier, A new solution to the equation tau(p) == 0 (mod p), J. Int. Seq. 13 (2010) # 10.7.4.

FORMULA

a(n) = A006093(n) * A008864(n);

a(n) = A084921(n)*2, for n > 1; a(n) = A084922(n)*6, for n > 2.

Product_{n > 0} a(n)/A066872(n) = 2/5. a(n) = A001248(n) - 1. - R. J. Mathar, Feb 01 2009

a(n) = prime(n)^2 - 1 = A001248(n) - 1. - Vladimir Joseph Stephan Orlovsky, Oct 17 2009

a(n) ~ n^2*log(n)^2. - Ilya Gutkovskiy, Jul 28 2016

a(n) = (1/2) * Sum_{|k|<=2*sqrt(p)} k^2*H(4*p-k^2) where H() is the Hurwitz class number and p is n-th prime. - Seiichi Manyama, Dec 31 2017

MAPLE

A084920:=n->ithprime(n)^2-1; seq(A084920(k), k=1..50); # Wesley Ivan Hurt, Oct 11 2013

MATHEMATICA

Table[Prime[n]^2 - 1, {n, 50}] (* Wesley Ivan Hurt, Oct 11 2013 *)

PROG

(Haskell)

a084920 n = (p - 1) * (p + 1) where p = a000040 n

-- Reinhard Zumkeller, Aug 27 2013

(MAGMA) [p^2-1: p in PrimesUpTo(200)]; // Vincenzo Librandi, Mar 30 2015

(Sage) [(p-1)*(p+1) for p in primes(200)] # Bruno Berselli, Mar 30 2015

(PARI) a(n) = (prime(n)-1)*(prime(n)+1); \\ Michel Marcus, Jul 28 2016

CROSSREFS

Cf. A000040, A005563, A049001, A166010, A182200, A182174.

Sequence in context: A280190 A037450 A081990 * A026556 A096001 A080097

Adjacent sequences:  A084917 A084918 A084919 * A084921 A084922 A084923

KEYWORD

nonn,easy

AUTHOR

Reinhard Zumkeller, Jun 11 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. . Note: Contributor's License Agreement was changed Aug 14 2018.

Last modified August 14 21:07 EDT 2018. Contains 313756 sequences. (Running on oeis4.)