OFFSET
1,1
COMMENTS
Denominators of decimal part of zeta(2) when it is represented as a sum of geometric series: zeta(2) = 1 + Sum_{n>=0} 1/a(n). - Andrés Ventas, Apr 06 2021
REFERENCES
W. Dunham, Euler: The Master of Us All, The Mathematical Association of America, Washington D.C., 1999, p. 66.
L. Euler, "Variae observationes circa series infinitas," Opera Omnia, Ser. 1, Vol. 14, pp. 216-244.
LINKS
Joakim Munkhammar, The Riemann zeta function as a sum of geometric series, The Mathematical Gazette (2020) Vol. 104, Issue 561, 527-530.
FORMULA
a(n) = A007916(n)^2 - 1. - David A. Corneth, Apr 06 2021
PROG
(PARI) lista(m) = {for (i=2, m, sq = i^2; if (ispower(sq) == 2, print1(sq-1, ", ")); ); } \\ Michel Marcus, Apr 17 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
Jason Earls, Jul 21 2001
EXTENSIONS
More terms from Dean Hickerson, Jul 24 2001
Offset corrected by Andrew Howroyd, Sep 18 2024
STATUS
approved