This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A084865 Primes of the form 2x^2 + 3y^2. 6
 2, 3, 5, 11, 29, 53, 59, 83, 101, 107, 131, 149, 173, 179, 197, 227, 251, 269, 293, 317, 347, 389, 419, 443, 461, 467, 491, 509, 557, 563, 587, 653, 659, 677, 683, 701, 773, 797, 821, 827, 941, 947, 971, 1013, 1019, 1061, 1091, 1109, 1163, 1181, 1187 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Subsequence of A084864; A084863(a(n))>0. Conjecture: A084863(a(n))=1? Is it true that a(n) = A019338(n+1)? Comment: The truth of the conjecture A084863(a(n))=1 follows from the genus theory of quadratic forms (see Cox, page 61). By comparing enough terms, we see that the conjecture a(n) = A019338(n+1) is false. - T. D. Noe, May 02 2008 Appears to be the primes p such that (p mod 6)*(Fibonacci(p) mod 6)=25. - Gary Detlefs, May 26 2014 REFERENCES David A. Cox, Primes of the Form x^2 + n y^2, Wiley, 1989. LINKS Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi] N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references) FORMULA The primes are congruent to {2, 3, 5, 11} (mod 24). - T. D. Noe, May 02 2008 EXAMPLE A000040(17) = 59 = 32 + 27 = 2*4^2 + 3*3^2, therefore 59 is a term. MATHEMATICA QuadPrimes2[2, 0, 3, 10000] (* see A106856 *) PROG (PARI) list(lim)=my(v=List(), w, t); for(x=0, sqrtint(lim\2), w=2*x^2; for(y=0, sqrtint((lim-w)\3), if(isprime(t=w+3*y^2), listput(v, t)))); Set(v) \\ Charles R Greathouse IV, Feb 09 2017 CROSSREFS Cf. A084863, A084864, A019338, A084866, A139827. Primes in A002480. Sequence in context: A098642 A079447 A171832 * A047934 A090235 A265418 Adjacent sequences:  A084862 A084863 A084864 * A084866 A084867 A084868 KEYWORD nonn,easy AUTHOR Reinhard Zumkeller, Jun 10 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 22 22:34 EDT 2019. Contains 328335 sequences. (Running on oeis4.)