login
A084707
a(n) = 3*a(n-1) - 3*a(n-3) + a(n-4) for n > 3, with a(0) = 1, a(1) = 3, a(2) = 9, a(3) = 27.
2
1, 3, 9, 27, 73, 195, 513, 1347, 3529, 9243, 24201, 63363, 165889, 434307, 1137033, 2976795, 7793353, 20403267, 53416449, 139846083, 366121801, 958519323, 2509436169, 6569789187, 17199931393, 45030004995, 117890083593, 308640245787, 808030653769
OFFSET
0,2
COMMENTS
Define f(x, y) := 9 - x - 3*y + x^2 - 3*x*y + y^2. Then f(x, y) = f(-4-y, -4-x). All of the integer solutions of 0 = f(x, y) with x>=0 are given by x = a(2*n) and y = a(2*n+1) for all n in Z. - Michael Somos, Aug 19 2023
LINKS
J. Hietarinta and C.-M. Viallet, Singularity confinement and chaos in discrete systems, Physical Review Letters 81 (1998), pp. 326-328.
FORMULA
G.f.: (1+3*x^3)/(1-3*x+3*x^3-x^4). - Harvey P. Dale, Mar 14 2011
a(n) = (8*LucasL(2*n) - (-1)^n - 10)/5. - G. C. Greubel, Apr 15 2023
a(n) = a(-n) = 4 + 2*a(n-1) + 2*a(n-2) - a(n-3) for all n in Z. - Michael Somos, Aug 19 2023
EXAMPLE
G.f. = 1 + 3*x + 9*x^2 + 27*x^3 + 73*x^4 + 195*x^5 + 513*x^6 + ... - Michael Somos, Aug 19 2023
MAPLE
a:=proc(n) option remember; if n=0 then 1 elif n=1 then 3 elif n=2 then 9 elif n=3 then 27 else 3*a(n-1)-3*a(n-3)+a(n-4); fi; end: seq(a(n), n=0..40); # Wesley Ivan Hurt, Aug 15 2016
MATHEMATICA
a[n_]:=a[n]=3a[n-1] -3a[n-3] +a[n-4]; a[0]=1; a[1]=3; a[2]=9; a[3]=27;
Table[ a[n], {n, 0, 27}]
Transpose[NestList[Join[Rest[#], ListCorrelate[{1, -3, 0, 3}, #]]&, {1, 3, 9, 27}, 30]][[1]]
CoefficientList[Series[(1+3 x^3)/(1-3 x+3 x^3-x^4), {x, 0, 30}], x] (* Harvey P. Dale, Mar 14 2011 *)
a[ n_] := Floor[(LucasL[2*n] - 1)*8/5]; (* Michael Somos, Aug 19 2023 *)
PROG
(Magma) A084707:=[1, 3, 9, 27]; [n le 4 select A084707[n] else 3*Self(n-1)-3*Self(n-3)+Self(n-4): n in [1..30]]; // Wesley Ivan Hurt, Aug 15 2016
(Magma) [(8*Lucas(2*n) -(-1)^n)/5 -2: n in [0..40]]; // G. C. Greubel, Apr 15 2023
(SageMath) [(8*lucas_number2(2*n, 1, -1) -(-1)^n)/5 -2 for n in range(41)] # G. C. Greubel, Apr 15 2023
(PARI) {a(n) = my(w=quadgen(5)); (real((1+w)^n*(2+w))-1)*8\5}; /* Michael Somos, Aug 19 2023 */
CROSSREFS
Sequence in context: A348555 A042938 A206604 * A193703 A289658 A180238
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jul 06 2003
EXTENSIONS
More terms from Ray Chandler, Jul 07 2003
STATUS
approved