login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A084704 Smallest prime p > prime(n) such that (p + prime(n))/2 is prime. 8
7, 17, 19, 23, 61, 29, 43, 59, 53, 43, 97, 53, 79, 59, 89, 83, 73, 79, 107, 181, 127, 131, 113, 109, 113, 151, 167, 193, 149, 151, 167, 197, 163, 197, 163, 229, 199, 179, 281, 347, 241, 263, 229, 257, 223, 271, 331, 239, 313, 269, 263, 313, 263, 269, 359, 293 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,1

COMMENTS

Subsidiary sequences: (1) Sequence of primes for a given prime p such that (p+q)/2 is a prime iff q belongs to this sequence. For example, for p = 5 the sequence is 17, 29, 41, 53, 89,...

Note that actually a(n) > prime(n+1) in all cases - because there is no prime between prime(n) and prime(n+1). - Zak Seidov, Jul 24 2013.

For n>2, a(n)-prime(n) is a multiple of 12. - Zak Seidov, Oct 15 2015

[Proof: the sequence searches prime triples prime(n)<q<a(n) such that q-prime(n)=a(n)-q, so q is the arithmetic mean of prime(n) and a(n). Seidov's theorem means that q-prime(n) and a(n)-q are multiples of 6 and cannot be multiples of 2 or 4 or 8 or 10 or 14 or 16 or 20 etc. The absence of such prime constellations (p,p+g,p+2g) with g=2, 4, 8, 10, etc is a fact proven by considering the prime triples modulo 3. - R. J. Mathar, Oct 16 2015]

LINKS

T. D. Noe and Zak Seidov, Table of n, a(n) for n = 2..10000

MAPLE

A084704 := proc(n)

    local p, a, q ;

    p := ithprime(n) ;

    a := nextprime(p) ;

    while not isprime((a+p)/2) do

        a := nextprime(a) ;

    end do:

    return a;

end proc: # R. J. Mathar, Oct 16 2015

MATHEMATICA

Table[p = q = Prime[n]; While[q = NextPrime[q]; ! PrimeQ[(p + q)/2]]; q, {n, 2, 100}] (* T. D. Noe, Apr 20 2011 *)

p=2; Table[p=NextPrime[p]; q=NextPrime[p, 2]; While[!PrimeQ[(p+q)/2], q=NextPrime[q]]; q, {99}] (* Zak Seidov, Jul 24 2013 *)

PROG

(PARI) a(n) = {q = prime(n); p = nextprime(q+1); while (!isprime((q+p)/2), p = nextprime(p+1)); p; } \\ Michel Marcus, Oct 15 2015

CROSSREFS

Cf. A001358, A165138.

Sequence in context: A001913 A270387 A071845 * A198032 A175901 A140566

Adjacent sequences:  A084701 A084702 A084703 * A084705 A084706 A084707

KEYWORD

nonn

AUTHOR

Amarnath Murthy, Jun 08 2003

EXTENSIONS

More terms from David Wasserman, Jan 03 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 7 05:39 EST 2016. Contains 278841 sequences.