This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A206604 Number of integers in the smallest interval containing both minimal and maximal possible apex values of an addition triangle whose base is a permutation of n+1 consecutive integers. 2
 1, 1, 3, 9, 27, 73, 189, 465, 1115, 2601, 5973, 13489, 30149, 66641, 146233, 318369, 689403, 1484137, 3181797, 6790641, 14445101, 30617841, 64724553, 136426849, 286926757, 601999633, 1260707529, 2634831585, 5497982025, 11452601761, 23823827825, 49484904257 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS For n>0 the base row of the addition triangle may contain a permutation of any set {b+k, k=0..n} where b is an integer or a half-integer.  Each number in a higher row is the sum of the two numbers directly below it.  Rows above the base row contain only integers. a(n) = 3 (mod 4) if n = 2^m with m > 0 and a(n) = 1 (mod 4) else. LINKS Alois P. Heinz, Table of n, a(n) for n = 0..1000 FORMULA a(n) = 1 + Sum_{k=0..n} C(n,floor(k/2)) * (2*k-n). G.f.:  1/(1-x) + (1-sqrt(1-4*x^2)) / (2*x-1)^2. a(n) = 1 + 2*A206603(n). a(n) = 1 + A189390(n)-A189391(n). a(n) ~ n*2^n * (1-2*sqrt(2)/sqrt(Pi*n)). - Vaclav Kotesovec, Mar 15 2014 EXAMPLE a(3) =  9:   max:   20          min:   12                   9   11             7   5                 3   6   5          5   2   3              1/2 5/2 7/2 3/2    7/2 3/2 1/2 5/2 [12, 13, ..., 20] contains 20-12+1 = 9 integers. a(4) = 27:   max:   13          min:  -13                    5  8              -5 -8                  0  5  3            0 -5 -3               -2  2  3  0         2 -2 -3  0             -2  0  2  1 -1      2  0 -2 -1  1 [-13, -12, ..., 13] contains 13-(-13)+1 = 27 integers. MAPLE a:= n-> 1 +add(binomial(n, floor(k/2))*(2*k-n), k=0..n): seq(a(n), n=0..40); # second Maple program a:= proc(n) option remember; `if`(n<3, 1+n*(n-1),       (3*n^2-6*n+6+(2*n^2-6)*a(n-1)+4*(n-1)*(n-4)*a(n-2)       -8*(n-1)*(n-2)*a(n-3)) / (n*(n-2)))     end: seq(a(n), n=0..40); # Alois P. Heinz, Apr 25 2013 CROSSREFS Cf. A189390, A189391, A206603. Sequence in context: A103828 A110740 A042938 * A084707 A193703 A289658 Adjacent sequences:  A206601 A206602 A206603 * A206605 A206606 A206607 KEYWORD nonn AUTHOR Alois P. Heinz, Feb 10 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 13:26 EST 2019. Contains 329751 sequences. (Running on oeis4.)