OFFSET
0,2
COMMENTS
Values of tribonacci polynomial n^3 - n^2 - n - 1 for n >= 0. - Artur Jasinski, Nov 19 2006
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..780
Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
FORMULA
a(n) = n^3 + 5n^2 + 7n + 1 = (n(n + 2)^3 + 1)/(n + 1) [with a different offset].
G.f.: (2*x^3+3*x^2+2*x-1)/(x-1)^4. - Alois P. Heinz, Jan 25 2023
MATHEMATICA
Table[n^3 - n^2 - n - 1, {n, 0, 41}] (* Artur Jasinski, Nov 19 2006 *)
LinearRecurrence[{4, -6, 4, -1}, {-1, -2, 1, 14}, 50] (* Harvey P. Dale, Oct 11 2020 *)
PROG
(Magma) [n^3 - n^2 - n - 1: n in [0..60]]; // Vincenzo Librandi, Apr 26 2011
(PARI) a(n)=n^3-n^2-n-1 \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Paul Barry, Apr 21 2003
EXTENSIONS
Simpler definition from Alonso del Arte, Sep 16 2004
STATUS
approved