login
A083074
a(n) = n^3 - n^2 - n - 1.
6
-1, -2, 1, 14, 43, 94, 173, 286, 439, 638, 889, 1198, 1571, 2014, 2533, 3134, 3823, 4606, 5489, 6478, 7579, 8798, 10141, 11614, 13223, 14974, 16873, 18926, 21139, 23518, 26069, 28798, 31711, 34814, 38113, 41614, 45323, 49246, 53389, 57758, 62359, 67198, 72281
OFFSET
0,2
COMMENTS
Values of tribonacci polynomial n^3 - n^2 - n - 1 for n >= 0. - Artur Jasinski, Nov 19 2006
FORMULA
a(n) = n^3 + 5n^2 + 7n + 1 = (n(n + 2)^3 + 1)/(n + 1) [with a different offset].
G.f.: (2*x^3+3*x^2+2*x-1)/(x-1)^4. - Alois P. Heinz, Jan 25 2023
MATHEMATICA
Table[n^3 - n^2 - n - 1, {n, 0, 41}] (* Artur Jasinski, Nov 19 2006 *)
LinearRecurrence[{4, -6, 4, -1}, {-1, -2, 1, 14}, 50] (* Harvey P. Dale, Oct 11 2020 *)
PROG
(Magma) [n^3 - n^2 - n - 1: n in [0..60]]; // Vincenzo Librandi, Apr 26 2011
(PARI) a(n)=n^3-n^2-n-1 \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
Apart from initial terms, a column of A083064.
Sequence in context: A124026 A106204 A290603 * A346378 A181869 A141510
KEYWORD
easy,sign
AUTHOR
Paul Barry, Apr 21 2003
EXTENSIONS
Simpler definition from Alonso del Arte, Sep 16 2004
STATUS
approved