login
a(n) = n^3 - n^2 - n - 1.
6

%I #35 Jan 25 2023 16:41:21

%S -1,-2,1,14,43,94,173,286,439,638,889,1198,1571,2014,2533,3134,3823,

%T 4606,5489,6478,7579,8798,10141,11614,13223,14974,16873,18926,21139,

%U 23518,26069,28798,31711,34814,38113,41614,45323,49246,53389,57758,62359,67198,72281

%N a(n) = n^3 - n^2 - n - 1.

%C Values of tribonacci polynomial n^3 - n^2 - n - 1 for n >= 0. - _Artur Jasinski_, Nov 19 2006

%H Vincenzo Librandi, <a href="/A083074/b083074.txt">Table of n, a(n) for n = 0..780</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).

%F a(n) = n^3 + 5n^2 + 7n + 1 = (n(n + 2)^3 + 1)/(n + 1) [with a different offset].

%F G.f.: (2*x^3+3*x^2+2*x-1)/(x-1)^4. - _Alois P. Heinz_, Jan 25 2023

%t Table[n^3 - n^2 - n - 1, {n, 0, 41}] (* _Artur Jasinski_, Nov 19 2006 *)

%t LinearRecurrence[{4,-6,4,-1},{-1,-2,1,14},50] (* _Harvey P. Dale_, Oct 11 2020 *)

%o (Magma) [n^3 - n^2 - n - 1: n in [0..60]]; // _Vincenzo Librandi_, Apr 26 2011

%o (PARI) a(n)=n^3-n^2-n-1 \\ _Charles R Greathouse IV_, Oct 07 2015

%Y Apart from initial terms, a column of A083064.

%Y Cf. A000027, A028387, A002378.

%K easy,sign

%O 0,2

%A _Paul Barry_, Apr 21 2003

%E Simpler definition from _Alonso del Arte_, Sep 16 2004