login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A083061 Triangle of coefficients of a companion polynomial to the Gandhi polynomial. 13
1, 1, 3, 4, 15, 15, 34, 147, 210, 105, 496, 2370, 4095, 3150, 945, 11056, 56958, 111705, 107415, 51975, 10395, 349504, 1911000, 4114110, 4579575, 2837835, 945945, 135135, 14873104, 85389132, 197722980, 244909665, 178378200, 77567490 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

This polynomial arises in the setting of a symmetric Bernoulli random walk and occurs in an expression for the even moments of the absolute distance from the origin after an even number of timesteps. The Gandhi polynomial, sequence A036970, occurs in an expression for the odd moments.

When formatted as a square array, first row is A002105, first column is A001147, second column is A001880.

Another version of the triangle T(n,k), 0<=k<=n, read by rows; given by [0, 1, 3, 6, 10, 15, 21, 28, ...] DELTA [1, 2, 3, 4, 5, 6, 7, 8, 9, ...] = 1; 0, 1; 0, 1, 3; 0, 4, 15, 15; 0, 34, 147, 210, 105; ... where DELTA is the operator defined in A084938. - Philippe Deléham, Jun 07 2004

In A160464 we defined the coefficients of the ES1 matrix. Our discovery that the n-th term of the row coefficients ES1[1-2*m,n] for m>=1, can be generated with rather simple polynomials led to triangle A094665 and subsequently to this one. - Johannes W. Meijer, May 24 2009

Related to polynomials defined in A160485 by a shift of +-1/2 and scaling by a power of 2. - Richard P. Brent, Jul 15 2014

LINKS

Table of n, a(n) for n=0..33.

R. P. Brent, Generalising Tuenter's binomial sums, arXiv:1407.3533 [math.CO], 2014.

R. B. Brent, Generalizing Tuenter's Binomial Sums, J. Int. Seq. 18 (2015) # 15.3.2

Marc Joye, Pascal Paillier and Berry Schoenmakers, On Second-Order Differential Power Analysis, in Cryptographic Hardware and Embedded Systems-CHES 2005, editors: Josyula R. Rao and Berk Sunar, Lecture Notes in Computer Science 3659 (2005) 293-308, Springer-Verlag.

H. J. H. Tuenter, Walking into an absolute sum, The Fibonacci Quarterly, 40 (2002), 175-180.

FORMULA

Let T(i, x)=(2x+1)(x+1)T(i-1, x+1)-2x^2T(i-1, x), T(0, x)=1; so that T(1, x)=1+3x; T(2, x)=4+15x+15x^2; T(3, x)=34+147x+210x^2+105x^3, etc. Then the (i, j)-th entry in the table is the coefficient of x^j in T(i, x).

a(n, k)*2^(n-k) = A085734(n, k). - Philippe Deléham, Feb 27 2005

EXAMPLE

Triangle starts (with an additional first column 1,0,0,...):

[1]

[0,      1]

[0,      1,       3]

[0,      4,      15,      15]

[0,     34,     147,     210,     105]

[0,    496,    2370,    4095,    3150,     945]

[0,  11056,   56958,  111705,  107415,   51975,  10395]

[0, 349504, 1911000, 4114110, 4579575, 2837835, 945945, 135135]

MAPLE

imax := 6;

T1(0, x) := 1:

T1(0, x+1) := 1:

for i from 1 to imax do

    T1(i, x) := expand((2*x+1) * (x+1) * T1(i-1, x+1) - 2*x^2*T1(i-1, x)):

    dx := degree(T1(i, x)):

    for k from 0 to dx do

        c(k) := coeff(T1(i, x), x, k)

    od:

    T1(i, x+1) := sum(c(j1)*(x+1)^(j1), j1 = 0..dx):

od:

for i from 0 to imax do

    for j from 0 to i do

        a(i, j) := coeff(T1(i, x), x, j)

    od:

od:

seq(seq(a(i, j), j = 0..i), i = 0..imax);

# Johannes W. Meijer, Jun 27 2009, revised Sep 23 2012

MATHEMATICA

b[0, 0] = 1;

b[n_, k_] := b[n, k] = Sum[2^j*(Binomial[k + j, 1 + j] + Binomial[k + j + 1, 1 + j])*b[n - 1, k - 1 + j], {j, Max[0, 1 - k], n - k}];

a[0, 0] = 1;

a[n_, k_] := b[n, k]/2^(n - k);

Table[a[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 19 2018, after Philippe Deléham *)

PROG

(Sage)

# Function fr2_row is defined in A088874.

A083061_row = lambda n: [(-1)^(n-k)*m*2^(-n+k) for k, m in enumerate(fr2_row(n))]

for n in (0..7): print A083061_row(n) # Peter Luschny, Sep 19 2017

CROSSREFS

Cf. A036970, A160485.

From Johannes W. Meijer, May 24 2009 and Jun 27 2009: (Start)

Cf. A160464, A094665 and A160468.

A002105 equals the row sums (n>=2) and the first left hand column (n>=1).

A001147, A001880, A160470, A160471 and A160472 are the first five right hand columns.

Appears in A162005, A162006 and A162007.

(End)

Sequence in context: A240673 A066830 A192211 * A285475 A136641 A053359

Adjacent sequences:  A083058 A083059 A083060 * A083062 A083063 A083064

KEYWORD

nonn,tabl

AUTHOR

Hans J. H. Tuenter, Apr 19 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 15 16:48 EDT 2018. Contains 313778 sequences. (Running on oeis4.)