login
A162007
Third left hand column of the EG1 triangle A162005
7
1, 270, 36096, 4766048, 704357760, 120536980224, 24060789342208, 5590122715250688, 1503080384197754880, 464520829174515630080, 163839204411117787938816, 65500849343294249018327040
OFFSET
3,2
FORMULA
a(n) = sum((-1)^(m-p-1)*sum(2^(n-q-1)*binomial(n-q-1,m-p-1)*A094665(n-1,q)* A156919(q,p),q=1..n-m+p), p=0..m-1) with m = 3.
MAPLE
nmax := 14; mmax := nmax: imax := nmax: T1(0, x) := 1: T1(0, x+1) := 1: for i from 1 to imax do T1(i, x) := expand((2*x+1)*(x+1)*T1(i-1, x+1) - 2*x^2*T1(i-1, x)): dx := degree(T1(i, x)): for k from 0 to dx do c(k) := coeff(T1(i, x), x, k) od: T1(i, x+1) := sum(c(j1)*(x+1)^(j1), j1 = 0..dx): od: for i from 0 to imax do for j from 0 to i do A083061(i, j) := coeff(T1(i, x), x, j) od: od: for n from 0 to nmax do for k from 0 to n do A094665(n+1, k+1) := A083061(n, k) od: od: A094665(0, 0) := 1: for n from 1 to nmax do A094665(n, 0) := 0 od: for m from 1 to mmax do A156919(0, m) := 0 end do: for n from 0 to nmax do A156919(n, 0) := 2^n end do: for n from 1 to nmax do for m from 1 to mmax do A156919(n, m) := (2*m+2)*A156919(n-1, m) + (2*n-2*m+1) * A156919(n-1, m-1) end do end do: m:=3; for n from m to nmax do a(n, m) := sum((-1)^(m-p1-1)*sum(2^(n-q-1)*binomial(n-q-1, m-p1-1) * A094665(n-1, q) * A156919(q, p1), q=1..n-m+p1), p1=0..m-1) od: seq(a(n, m), n = m..nmax);
# Maple program edited by Johannes W. Meijer, Sep 25 2012
CROSSREFS
Third left hand column of the EG1 triangle A162005.
Other left hand columns are A000182 and A162006.
Related to A094665, A083061 and A156919.
A000079, A036289 and A100381 appear in the a(n, 3) formula.
A001789, A003472, A054849, A002409, A054851, A140325 and A140354 (scaled by 2^(m-1)) appear one by one in the a(n, m) formulas for m= 4 and higher .
Sequence in context: A109025 A028535 A108094 * A289136 A317476 A290643
KEYWORD
easy,nonn
AUTHOR
Johannes W. Meijer, Jun 27 2009
STATUS
approved