OFFSET
1,2
COMMENTS
k^k^k also has the same final digits as k. - Ed Pegg Jr, Jun 27 2013
For any positive integer r the sequence contains 10^r-1. - Reiner Moewald, Feb 14 2016
From Robert Israel, Mar 04 2016: (Start)
All terms > 96 end in 01, 25, 49, 51, 57, 75, 76, 93 or 99.
It appears that except for 1, 5, 6, 9, 57 and 93, if k is a term then so is the number obtained from k by deleting its first digit. (End)
REFERENCES
Suggested by Herb Conn.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
FORMULA
{ k : k^k mod 10^(1+floor(log_10(k))) = k }. - Jon E. Schoenfield, Jun 02 2024
EXAMPLE
9^9 = 387420489 ends in 9, so 9 is a term.
11^11 = 285311670611 ends in 11, so 11 is a term.
MAPLE
a:= proc(n) option remember; local k; for k from 1+
a(n-1) while k&^k mod (10^length(k))<>k do od; k
end: a(1):=1:
seq(a(n), n=1..100); # Alois P. Heinz, Jun 27 2013
select(n -> n&^n mod 10^(1+ilog10(n)) = n, [$1..1000]); # Robert Israel, Mar 04 2016
MATHEMATICA
Select[Range@ 1000, Function[k, Take[IntegerDigits[#^#], -Length@ k] == k]@ IntegerDigits@ # &] (* Michael De Vlieger, Mar 04 2016 *)
Select[Range[1000], PowerMod[#, #, 10^IntegerLength[#]]==#&] (* Harvey P. Dale, Dec 21 2019 *)
PROG
(PARI) for (d = 1, 4, for (i = 10^(d - 1), 10^d - 1, x = Mod(i, 10^d); if (x^i == x, print(i)))) \\ David Wasserman, Oct 27 2006
(PARI) is(n)=my(d=digits(n)); Mod(n, 10^#d)^n==n \\ Charles R Greathouse IV, Jan 02 2013
(Python)
from itertools import count
def A082576_gen(): # generator of terms
yield from (1, 5, 6, 9, 11, 16, 21, 25, 31, 36, 41, 49, 51, 56, 57, 61, 71, 75, 76, 81, 91, 93, 96, 99)
for i in count(100, 100):
for j in (1, 25, 49, 51, 57, 75, 76, 93, 99):
m = i+j
if pow(m, m, 10**(len(str(m)))) == m:
yield m
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Gary W. Adamson, May 07 2003
EXTENSIONS
More terms from David Wasserman, Oct 27 2006
STATUS
approved