login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A082576
Numbers k such that k^k has final digits the same as all the digits of k.
10
1, 5, 6, 9, 11, 16, 21, 25, 31, 36, 41, 49, 51, 56, 57, 61, 71, 75, 76, 81, 91, 93, 96, 99, 101, 125, 151, 176, 193, 201, 249, 251, 301, 351, 375, 376, 401, 451, 499, 501, 551, 557, 576, 601, 625, 651, 693, 701, 749, 751, 776, 801, 851, 875, 901, 951, 976, 999
OFFSET
1,2
COMMENTS
k^k^k also has the same final digits as k. - Ed Pegg Jr, Jun 27 2013
For any positive integer r the sequence contains 10^r-1. - Reiner Moewald, Feb 14 2016
From Robert Israel, Mar 04 2016: (Start)
All terms > 96 end in 01, 25, 49, 51, 57, 75, 76, 93 or 99.
It appears that except for 1, 5, 6, 9, 57 and 93, if k is a term then so is the number obtained from k by deleting its first digit. (End)
REFERENCES
Suggested by Herb Conn.
FORMULA
{ k : k^k mod 10^(1+floor(log_10(k))) = k }. - Jon E. Schoenfield, Jun 02 2024
EXAMPLE
9^9 = 387420489 ends in 9, so 9 is a term.
11^11 = 285311670611 ends in 11, so 11 is a term.
MAPLE
a:= proc(n) option remember; local k; for k from 1+
a(n-1) while k&^k mod (10^length(k))<>k do od; k
end: a(1):=1:
seq(a(n), n=1..100); # Alois P. Heinz, Jun 27 2013
select(n -> n&^n mod 10^(1+ilog10(n)) = n, [$1..1000]); # Robert Israel, Mar 04 2016
MATHEMATICA
Select[Range@ 1000, Function[k, Take[IntegerDigits[#^#], -Length@ k] == k]@ IntegerDigits@ # &] (* Michael De Vlieger, Mar 04 2016 *)
Select[Range[1000], PowerMod[#, #, 10^IntegerLength[#]]==#&] (* Harvey P. Dale, Dec 21 2019 *)
PROG
(PARI) for (d = 1, 4, for (i = 10^(d - 1), 10^d - 1, x = Mod(i, 10^d); if (x^i == x, print(i)))) \\ David Wasserman, Oct 27 2006
(PARI) is(n)=my(d=digits(n)); Mod(n, 10^#d)^n==n \\ Charles R Greathouse IV, Jan 02 2013
(Python)
from itertools import count
def A082576_gen(): # generator of terms
yield from (1, 5, 6, 9, 11, 16, 21, 25, 31, 36, 41, 49, 51, 56, 57, 61, 71, 75, 76, 81, 91, 93, 96, 99)
for i in count(100, 100):
for j in (1, 25, 49, 51, 57, 75, 76, 93, 99):
m = i+j
if pow(m, m, 10**(len(str(m)))) == m:
yield m
A082576_list = list(islice(A082576_gen(), 50)) # Chai Wah Wu, Jun 02 2024
CROSSREFS
Cf. A002283.
Sequence in context: A220968 A179662 A137859 * A177731 A074185 A242733
KEYWORD
nonn,base
AUTHOR
Gary W. Adamson, May 07 2003
EXTENSIONS
More terms from David Wasserman, Oct 27 2006
STATUS
approved