login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A080412 Exchange rightmost two binary digits of n>1; a(0)=0, a(1)=2. 10
0, 2, 1, 3, 4, 6, 5, 7, 8, 10, 9, 11, 12, 14, 13, 15, 16, 18, 17, 19, 20, 22, 21, 23, 24, 26, 25, 27, 28, 30, 29, 31, 32, 34, 33, 35, 36, 38, 37, 39, 40, 42, 41, 43, 44, 46, 45, 47, 48, 50, 49, 51, 52, 54, 53, 55, 56, 58, 57, 59, 60, 62, 61, 63, 64, 66, 65, 67, 68, 70, 69, 71, 72 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

For n>3: a(n) = 4*floor(n/4) + a(n mod 4); self-inverse permutation of the natural numbers: a(a(n)) = n.

Lodumo_2 of A021913. - Philippe Deléham, Apr 26 2009

LINKS

Table of n, a(n) for n=0..72.

Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).

Index entries for sequences that are permutations of the natural numbers

FORMULA

a(n) = a(n-1) + a(n-4) - a(n-5) for n>4. - Joerg Arndt, Mar 11 2013

a(n) = lod_2(A021913(n)). - Philippe Deléham, Apr 26 2009

From Wesley Ivan Hurt, May 28 2016: (Start)

a(n) = n+1+(1+i)*(2*i-2-(1-i)*i^(2*n)+i^(-n)-i^(1+n))/4 where i=sqrt(-1).

G.f.: x*(2-x+2*x^2+x^3) / ((x-1)^2*(1+x+x^2+x^3)). (End)

E.g.f.: (sin(x) + cos(x) + (2*x + 1)*sinh(x) + (2*x - 1)*cosh(x))/2. - Ilya Gutkovskiy, May 28 2016

EXAMPLE

a(20) = a('101'00') = '101'00' = 20; a(21) = a('101'01') = '101'10' = 22.

a(2) = a('10') = '01' = 1; a(3) = a('11') = '11' = 3.

MAPLE

A080412:=n->n+1+(1+I)*(2*I-2-(1-I)*I^(2*n)+I^(-n)-I^(1+n))/4: seq(A080412(n), n=0..100); # Wesley Ivan Hurt, May 28 2016

MATHEMATICA

a[n_] := (bits = IntegerDigits[n, 2]; Join[Drop[bits, -2], {bits[[-1]], bits[[-2]]}] // FromDigits[#, 2]&); a[0]=0; a[1]=2; Table[a[n], {n, 0, 72}] (* Jean-François Alcover, Mar 11 2013 *)

ertbd[n_]:=Module[{a, b}, {a, b}=TakeDrop[IntegerDigits[n, 2], IntegerLength[ n, 2]-2]; FromDigits[Join[a, Reverse[b]], 2]]; Join[{0, 2}, Array[ertbd, 80, 2]] (* The program uses the TakeDrop function from Mathematica version 10 *) (* Harvey P. Dale, Jan 07 2016 *)

CROSSREFS

Cf. A004442, A007088, A021913, A080413, A080414.

Sequence in context: A293517 A122514 A130077 * A098164 A158504 A293253

Adjacent sequences:  A080409 A080410 A080411 * A080413 A080414 A080415

KEYWORD

nonn,easy,nice

AUTHOR

Reinhard Zumkeller, Feb 17 2003

EXTENSIONS

Typo in example fixed by Reinhard Zumkeller, Jul 06 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 20 00:42 EST 2017. Contains 294957 sequences.