login
A080410
Boustrophedon transform of the continued fraction of the Euler-Mascheroni constant, gamma (A001620).
1
0, 1, 3, 8, 23, 72, 279, 1236, 6313, 36133, 230119, 1611138, 12308693, 101865629, 907900133, 8669791288, 88309821406, 955736037556, 10951928988000, 132472073263683, 1686686835102650, 22549341913109430, 315817852408881670
OFFSET
0,3
LINKS
J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J.Combin. Theory, 17A 44-54 1996 (Abstract, pdf, ps).
N. J. A. Sloane, Transforms
FORMULA
a(n) appears to be asymptotic to C*n!*(2/Pi)^n where C=5.79838940503783299259552225238077705314049166104773668246015... which almost satisfies the polynomial equation 94487-16249C-8C^2=0 - Benoit Cloitre and Mark Hudson (mrmarkhudson(AT)hotmail.com)
EXAMPLE
We simply apply the Boustrophedon transform to [0,1,1,2,1,2,1,4,3,13,5,1,1,8,1,2,4,1,1,40,...] (A002852)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Mark Hudson (mrmarkhudson(AT)hotmail.com), Feb 18 2003
STATUS
approved