This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A077964 Expansion of 1/(1+2*x^2-2*x^3). 3
 1, 0, -2, 2, 4, -8, -4, 24, -8, -56, 64, 96, -240, -64, 672, -352, -1472, 2048, 2240, -7040, -384, 18560, -13312, -37888, 63744, 49152, -203264, 29184, 504832, -464896, -951296, 1939456, 972800, -5781504, 1933312, 13508608, -15429632, -23150592, 57876480, 15441920, -162054144 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (0,-2,2). FORMULA a(n) = (-1)^n * A077968(n). - G. C. Greubel, Jun 24 2019 MATHEMATICA LinearRecurrence[{0, -2, 2}, {1, 0, -2}, 50] (* or *) CoefficientList[Series[ 1/(1+2*x^2-2*x^3), {x, 0, 50}], x] (* G. C. Greubel, Jun 24 2019 *) PROG (PARI) Vec(1/(1+2*x^2-2*x^3)+O(x^50)) \\ Charles R Greathouse IV, Sep 26 2012 (MAGMA) R:=PowerSeriesRing(Integers(), 50); Coefficients(R!( 1/(1+2*x^2-2*x^3) )); // G. C. Greubel, Jun 24 2019 (Sage) (1/(1+2*x^2-2*x^3)).series(x, 50).coefficients(x, sparse=False) # G. C. Greubel, Jun 24 2019 (GAP) a:=[1, 0, -2];; for n in [4..50] do a[n]:=2*(-a[n-2]+a[n-3]); od; a; # G. C. Greubel, Jun 24 2019 CROSSREFS Cf. A077968, A078037. Sequence in context: A137778 A000017 A032522 * A077968 A123958 A048572 Adjacent sequences:  A077961 A077962 A077963 * A077965 A077966 A077967 KEYWORD sign,easy AUTHOR N. J. A. Sloane, Nov 17 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 15 20:00 EST 2019. Contains 330000 sequences. (Running on oeis4.)