login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A077964 Expansion of 1/(1+2*x^2-2*x^3). 3
1, 0, -2, 2, 4, -8, -4, 24, -8, -56, 64, 96, -240, -64, 672, -352, -1472, 2048, 2240, -7040, -384, 18560, -13312, -37888, 63744, 49152, -203264, 29184, 504832, -464896, -951296, 1939456, 972800, -5781504, 1933312, 13508608, -15429632, -23150592, 57876480, 15441920, -162054144 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (0,-2,2).

FORMULA

a(n) = (-1)^n * A077968(n). - G. C. Greubel, Jun 24 2019

MATHEMATICA

LinearRecurrence[{0, -2, 2}, {1, 0, -2}, 50] (* or *) CoefficientList[Series[ 1/(1+2*x^2-2*x^3), {x, 0, 50}], x] (* G. C. Greubel, Jun 24 2019 *)

PROG

(PARI) Vec(1/(1+2*x^2-2*x^3)+O(x^50)) \\ Charles R Greathouse IV, Sep 26 2012

(MAGMA) R<x>:=PowerSeriesRing(Integers(), 50); Coefficients(R!( 1/(1+2*x^2-2*x^3) )); // G. C. Greubel, Jun 24 2019

(Sage) (1/(1+2*x^2-2*x^3)).series(x, 50).coefficients(x, sparse=False) # G. C. Greubel, Jun 24 2019

(GAP) a:=[1, 0, -2];; for n in [4..50] do a[n]:=2*(-a[n-2]+a[n-3]); od; a; # G. C. Greubel, Jun 24 2019

CROSSREFS

Cf. A077968, A078037.

Sequence in context: A137778 A000017 A032522 * A077968 A123958 A048572

Adjacent sequences:  A077961 A077962 A077963 * A077965 A077966 A077967

KEYWORD

sign,easy

AUTHOR

N. J. A. Sloane, Nov 17 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 15 20:00 EST 2019. Contains 330000 sequences. (Running on oeis4.)