login
A077962
Expansion of 1/(1+x^2+x^3).
6
1, 0, -1, -1, 1, 2, 0, -3, -2, 3, 5, -1, -8, -4, 9, 12, -5, -21, -7, 26, 28, -19, -54, -9, 73, 63, -64, -136, 1, 200, 135, -201, -335, 66, 536, 269, -602, -805, 333, 1407, 472, -1740, -1879, 1268, 3619, 611, -4887, -4230, 4276, 9117, -46, -13393, -9071, 13439, 22464, -4368, -35903, -18096, 40271, 53999
OFFSET
0,6
LINKS
M. Janjic, Determinants and Recurrence Sequences, Journal of Integer Sequences, 2012, Article 12.3.5. [N. J. A. Sloane, Sep 16 2012]
FORMULA
a(n) = (-1)^n*A077961(n).
MATHEMATICA
CoefficientList[ Series[1/(1 + x^2 + x^3), {x, 0, 70}], x] (* Robert G. Wilson v, Mar 22 2011 *)
LinearRecurrence[{0, -1, -1}, {1, 0, -1}, 70] (* Harvey P. Dale, Dec 04 2015 *)
PROG
(PARI) Vec(1/(1+x^2+x^3)+O(x^70)) \\ Charles R Greathouse IV, Sep 26 2012
(Magma) R<x>:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/(1+x^2+x^3) )); // G. C. Greubel, Jun 23 2019
(Sage) (1/(1+x^2+x^3)).series(x, 70).coefficients(x, sparse=False) # G. C. Greubel, Jun 23 2019
(GAP) a:=[1, 0, -1];; for n in [4..70] do a[n]:=-a[n-2]-a[n-3]; od; a; # G. C. Greubel, Jun 23 2019
CROSSREFS
Sequence in context: A341889 A078031 A077961 * A353484 A349134 A338101
KEYWORD
sign,easy
AUTHOR
N. J. A. Sloane, Nov 17 2002
STATUS
approved