login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A077961 Expansion of 1 / (1 + x^2 - x^3) in powers of x. 10
1, 0, -1, 1, 1, -2, 0, 3, -2, -3, 5, 1, -8, 4, 9, -12, -5, 21, -7, -26, 28, 19, -54, 9, 73, -63, -64, 136, 1, -200, 135, 201, -335, -66, 536, -269, -602, 805, 333, -1407, 472, 1740, -1879, -1268, 3619, -611, -4887, 4230, 4276, -9117, -46, 13393, -9071, -13439, 22464, 4368, -35903, 18096, 40271, -53999 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,6

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..1000

N. Gogin and A. Mylläri, Padovan-like sequences and Bell polynomials, Proceedings of Applications of Computer Algebra ACA, 2013.

Michael D. Hirschhorn, Non-trivial intertwined second-order recurrence relations, Fibonacci Quart. 43 (2005), no. 4, 316-325. See L_n.

Index entries for linear recurrences with constant coefficients, signature (0,-1,1).

FORMULA

a(n) = Sum_{k=0..floor(n/2)} binomial(k, n-2k)(-1)^(n-k). - Paul Barry, Jun 24 2005

From Alois P. Heinz, Jun 20 2008: (Start)

a(n) = term (1,1) in matrix [0,1,0; -1,0,1; 1,0,0]^n.

a(n) = A000930 (-3-n). (End)

a(-n) = A078012(n). - Michael Somos, May 03 2011

From Michael Somos, Jan 08 2014: (Start)

a(-n) = A135851(n+2).

a(n)^2 - a(n-1)*a(n+1) = A135851(n+5). (End)

G.f.: Q(0)/2 , where Q(k) = 1 + 1/(1 - x^2*(4*k+1 - x )/( x^2*(4*k+3 - x ) - 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Sep 09 2013

EXAMPLE

G.f. = 1 - x^2 + x^3 + x^4 - 2*x^5 + 3*x^7 - 2*x^8 - 3*x^9 + 5*x^10 + x^11 + ...

MAPLE

a:= n-> (<<0|1|0>, <-1|0|1>, <1|0|0>>^n)[1, 1]:

seq(a(n), n=0..50);  # Alois P. Heinz, Jun 20 2008

MATHEMATICA

a[ n_] := If[ n >= 0, SeriesCoefficient[ 1 / (1 + x^2 - x^3), {x, 0, n}], SeriesCoefficient[ x^3 / (1 - x - x^3), {x, 0, -n}]] (* Michael Somos, Jan 08 2014 *)

PROG

(PARI) {a(n) = if( n<0, polcoeff( x^3 / (1 - x - x^3) + x * O(x^-n), -n), polcoeff( 1 / (1 + x^2 - x^3) + x * O(x^n), n))} /* Michael Somos, Jan 08 2014 */

CROSSREFS

Cf. A000930, A078012, A135851.

Sequence in context: A051613 A173291 A078031 * A077962 A213607 A298932

Adjacent sequences:  A077958 A077959 A077960 * A077962 A077963 A077964

KEYWORD

sign,easy

AUTHOR

N. J. A. Sloane, Nov 17 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 10 20:48 EST 2019. Contains 329909 sequences. (Running on oeis4.)