login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A077963 Expansion of 1/(1+x^2+2*x^3). 2
1, 0, -1, -2, 1, 4, 3, -6, -11, 0, 23, 22, -23, -68, -21, 114, 157, -72, -385, -242, 529, 1012, -45, -2070, -1979, 2160, 6119, 1798, -10439, -14036, 6843, 34914, 21229, -48600, -91057, 6142, 188257, 175972, -200541, -552486, -151403, 953568, 1256375, -650762, -3163511, -1861988, 4465035 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (0,-1,-2).

FORMULA

a(n) = (-1)^n * A077912(n). - G. C. Greubel, Jun 23 2019

MATHEMATICA

CoefficientList[Series[1/(1+x^2+2*x^3), {x, 0, 50}], x] (* or *) LinearRecurrence[{0, -1, -2}, {1, 0, -1}, 50] (* G. C. Greubel, Jun 23 2019 *)

PROG

(PARI) my(x='x+O('x^50)); Vec(1/(1+x^2+2*x^3)) \\ G. C. Greubel, Jun 23 2019

(MAGMA) R<x>:=PowerSeriesRing(Integers(), 50); Coefficients(R!( 1/(1+x^2+2*x^3) )); // G. C. Greubel, Jun 23 2019

(Sage) (1/(1+x^2+2*x^3)).series(x, 50).coefficients(x, sparse=False) # G. C. Greubel, Jun 23 2019

(GAP) a:=[1, 0, -1];; for n in [4..50] do a[n]:=-a[n-2]-2*a[n-3]; od; a; # G. C. Greubel, Jun 23 2019

CROSSREFS

Cf. A077912.

Sequence in context: A125154 A281853 A077912 * A114861 A086512 A120751

Adjacent sequences:  A077960 A077961 A077962 * A077964 A077965 A077966

KEYWORD

sign,easy

AUTHOR

N. J. A. Sloane, Nov 17 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 16 19:17 EST 2019. Contains 329201 sequences. (Running on oeis4.)