login
A077802
Sum of products of parts increased by 1 in hook partitions of n, where hook partitions are of the form h*1^(n-h).
6
1, 2, 7, 18, 41, 88, 183, 374, 757, 1524, 3059, 6130, 12273, 24560, 49135, 98286, 196589, 393196, 786411, 1572842, 3145705, 6291432, 12582887, 25165798, 50331621, 100663268, 201326563, 402653154, 805306337, 1610612704
OFFSET
0,2
COMMENTS
It is not clear whether a(0) should be 1 or 0; this depends on whether the empty partition is a hook partition. By strict interpretation of the definition above, it is not; and except for n=0, there are exactly n hook partitions for each n. On the other hand, if defined as "a partition in whose Ferrers diagram every point is on the first row or column", the empty partition is a hook partition. - Franklin T. Adams-Watters, Jul 11 2009
FORMULA
From Vladeta Jovovic, Dec 05 2002: (Start)
a(n) = 3*2^n - n - 3, n > 0.
G.f.: x*(2-x)/(1-2*x)/(1-x)^2.
Recurrence: a(n) = 4*a(n-1) - 5*a(n-2) + 2*a(n-3). (End)
Row sums of triangle A132048. Equals binomial transform of [1, 1, 4, 2, 4, 2, 4, 2, 4, ...]. - Gary W. Adamson, Aug 08 2007
a(n) = A125128(n) + A000225(n), n >= 1. - Miquel Cerda, Aug 07 2016
EXAMPLE
The hook partitions of 4 are 4, 3+1, 2+1+1, 1+1+1+1; the corresponding products when parts are increased by 1 are 5, 8, 12, 16; and their sum is a(4) = 41.
MATHEMATICA
s=0; lst={1}; Do[s+=(s-n); AppendTo[lst, Abs[s]], {n, 2, 4!}]; lst (* Vladimir Joseph Stephan Orlovsky, Oct 10 2008 *)
PROG
(PARI) a(n)=if(n>0, 3*2^n - n - 3, 1) \\ Charles R Greathouse IV, Aug 08 2016
CROSSREFS
Cf. A074141, A055010 (first differences), A042950 (second differences).
Cf. A132048.
Same as A095151 except for a(0). - Franklin T. Adams-Watters, Jul 11 2009
Sequence in context: A295054 A192955 A055503 * A095151 A147611 A007991
KEYWORD
easy,nonn
AUTHOR
Alford Arnold, Dec 02 2002
EXTENSIONS
More terms from John W. Layman, Dec 05 2002
STATUS
approved