login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A125128 a(n) = 2^(n+1) - n - 2, or partial sums of main diagonal of array A125127 of k-step Lucas numbers. 13
1, 4, 11, 26, 57, 120, 247, 502, 1013, 2036, 4083, 8178, 16369, 32752, 65519, 131054, 262125, 524268, 1048555, 2097130, 4194281, 8388584, 16777191, 33554406, 67108837, 134217700, 268435427, 536870882, 1073741793, 2147483616, 4294967263, 8589934558 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Essentially a duplicate of A000295: a(n) = A000295(n+1).

Partial sums of main diagonal of array A125127 = L(k,n): k-step Lucas numbers, read by antidiagonals.

Equals row sums of triangle A130128. - Gary W. Adamson, May 11 2007

Row sums of triangle A130330 which is composed of (1,3,7,15...) in every column, thus: row sums of (1; 3,1; 7,3,1;...). - Gary W. Adamson, May 24 2007

Row sums of triangle A131768. - Gary W. Adamson, Jul 13 2007

Convolution A130321 * (1, 2, 3,...). Binomial transform of (1, 3, 4, 4, 4,...). - Gary W. Adamson, Jul 27 2007

Row sums of triangle A131816. - Gary W. Adamson, Jul 30 2007

A000975 convolved with [1, 2, 2, 2,...]. - Gary W. Adamson, Jun 02 2009

The eigensequence of a triangle with the triangular series as the left border and the rest 1's. - Gary W. Adamson, Jul 24 2010

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

Index entries for linear recurrences with constant coefficients, signature (4,-5,2).

FORMULA

a(n) = A000295(n+1) = 2^(n+1) - n - 2 = Sum_{i=1..n} A125127(i,i) = Sum_{i=1..n} ((2^i)-1). |Edited by M. F. Hasler, Jul 30 2015]

a(n) = 4*a(n-1)-5*a(n-2)+2*a(n-3). G.f.: x/((1-x)^2*(1-2*x)). [Colin Barker, Jun 17 2012]

a(n) = A000225(n) + A000325(n) - 1. - Miquel Cerda, Aug 07 2016

a(n) = A095151(n) - A000225(n). - Miquel Cerda, Aug 12 2016

EXAMPLE

a(1) = 1 because "1-step Lucas number"(1) = 1.

a(2) = 4 = a(1) + [2-step] Lucas number(2) = 1 + 3.

a(3) = 11 = a(2) + 3-step Lucas number(3) = 1 + 3 + 7.

a(4) = 26 = a(3) + 4-step Lucas number(4) = 1 + 3 + 7 + 15.

a(5) = 57 = a(4) + 5-step Lucas number(5) = 1 + 3 + 7 + 15 + 31.

a(6) = 120 = a(5) + 6-step Lucas number(6) = 1 + 3 + 7 + 15 + 31 + 63.

G.f. = x + 4*x^2 + 11*x^3 + 26*x^4 + 57*x^5 + 120*x^6 + 247*x^7 + 502*x^8 + ...

MATHEMATICA

CoefficientList[Series[1/((1-x)^2*(1-2*x)), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 28 2012 *)

LinearRecurrence[{4, -5, 2}, {1, 4, 11}, 30] (* Harvey P. Dale, Nov 16 2014 *)

a[ n_] := With[{m = n + 1}, If[ m < 0, 0, 2^m - (1 + m)]]; (* Michael Somos, Aug 17 2015 *)

PROG

(MAGMA) I:=[1, 4, 11]; [n le 3 select I[n] else 4*Self(n-1)-5*Self(n-2)+2*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Jun 28 2012

(PARI) A125128(n)=2<<n-n-2 \\ M. F. Hasler, Jul 30 2015

(PARI) {a(n) = n++; if( n<0, 0, 2^n - (1+n))}; /* Michael Somos, Aug 17 2015 */

CROSSREFS

Cf. A000295, A125127, A125129, A130103.

Sequence in context: A248425 A130103 A000295 * A034334 A036891 A183276

Adjacent sequences:  A125125 A125126 A125127 * A125129 A125130 A125131

KEYWORD

easy,nonn

AUTHOR

Jonathan Vos Post, Nov 22 2006

EXTENSIONS

Edited by M. F. Hasler, Jul 30 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified June 22 23:15 EDT 2017. Contains 288633 sequences.