OFFSET
0,1
COMMENTS
LINKS
Luigi Cerlienco, Maurice Mignotte, and F. Piras, Suites récurrentes linéaires: Propriétés algébriques et arithmétiques, L'Enseignement Math., 33 (1987), 67-108. See Example 2, page 93.
Tanya Khovanova, Recursive Sequences
Index entries for linear recurrences with constant coefficients, signature (4,-1).
FORMULA
a(n) = T(n+1,2) + 2*T(n,2), with T(n,x) Chebyshev's polynomials of the first kind, A053120. T(n,2) = A001075(n).
G.f.: (4-5*x)/(1-4*x+x^2).
From Al Hakanson (hawkuu(AT)gmail.com), Jul 06 2009: (Start)
a(n) = ((4+sqrt(3))*(2+sqrt(3))^n + (4-sqrt(3))*(2-sqrt(3))^n)/2. Offset 0.
a(n) = second binomial transform of 4,3,12,9,36. (End)
a(n) = (A054491(n+1) - A054491(n-1))/2 = sqrt(3*A054491(n-1)*A054491(n+1) + 52), n >= 1. - Klaus Purath, Oct 12 2021
EXAMPLE
11 = a(1) = sqrt(3*A054491(1)^2 + 13) = sqrt(3*6^2 + 13)= sqrt(121) = 11.
MATHEMATICA
CoefficientList[Series[(4-5*x)/(1-4*x+x^2), {x, 0, 20}], x] (* or *) LinearRecurrence[{4, -1}, {4, 11}, 30] (* G. C. Greubel, Apr 28 2019 *)
PROG
(PARI) my(x='x+O('x^30)); Vec((4-5*x)/(1-4*x+x^2)) \\ G. C. Greubel, Apr 28 2019
(PARI) a(n) = polchebyshev(n+1, 1, 2) + 2*polchebyshev(n, 1, 2); \\ Michel Marcus, Oct 13 2021
(Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (4-5*x)/(1-4*x+x^2) )); // G. C. Greubel, Apr 28 2019
(Sage) ((4-5*x)/(1-4*x+x^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Apr 28 2019
(GAP) a:=[4, 11];; for n in [3..30] do a[n]:=4*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Apr 28 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Nov 08 2002
EXTENSIONS
Edited by N. J. A. Sloane, Sep 07 2018, replacing old definition with simple formula from Philippe Deléham, Nov 16 2008
STATUS
approved