login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A077236 Bisection (even part) of Chebyshev sequence with Diophantine property. 8
4, 11, 40, 149, 556, 2075, 7744, 28901, 107860, 402539, 1502296, 5606645, 20924284, 78090491, 291437680, 1087660229, 4059203236, 15149152715, 56537407624, 211000477781, 787464503500, 2938857536219, 10967965641376 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

a(n)^2 - 3*b(n)^2 = 13, with the companion sequence b(n)= A054491(n).

The odd part is A077235(n) with Diophantine companion A077234(n).

LINKS

Table of n, a(n) for n=0..22.

Tanya Khovanova, Recursive Sequences

Index entries for sequences related to Chebyshev polynomials.

Index entries for linear recurrences with constant coefficients, signature (4,-1).

FORMULA

a(n)= T(n+1, 2)+2*T(n, 2), with T(n, x) Chebyshev's polynomials of the first kind, A053120. T(n, 2)= A001075(n).

G.f.: (4-5*x)/(1-4*x+x^2).

a(n)=4*a(n-1)-a(n-2) with a(0)=4 and a(1)=11. [From Philippe Deléham, Nov 16 2008]

a(n)=-(1/2)*sqrt(3)*[2-sqrt(3)]^n+(1/2)*sqrt(3)*[2+sqrt(3)]^n+2*[2-sqrt(3)]^n+2*[2 +sqrt(3)]^n, with n>=0 [From Paolo P. Lava, Nov 20 2008]

a(n)=((4+sqrt3)(2+sqrt3)^n+(4-sqrt3)(2-sqrt3)^n)/2. Offset 0. a(n)=second binomial transform of 4,3,12,9,36. [From Al Hakanson (hawkuu(AT)gmail.com), Jul 06 2009]

EXAMPLE

11 = a(1) = sqrt(3*A054491(1)^2 + 13) = sqrt(3*6^2 + 13)= sqrt(121) = 11.

CROSSREFS

Cf. A077238 (even and odd parts).

Sequence in context: A149267 A149268 A214142 * A228190 A289283 A152532

Adjacent sequences:  A077233 A077234 A077235 * A077237 A077238 A077239

KEYWORD

nonn,easy

AUTHOR

Wolfdieter Lang, Nov 08, 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 21 17:44 EST 2017. Contains 295004 sequences.