login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A077234 Bisection (odd part) of Chebyshev sequence with Diophantine property. 5
2, 9, 34, 127, 474, 1769, 6602, 24639, 91954, 343177, 1280754, 4779839, 17838602, 66574569, 248459674, 927264127, 3460596834, 12915123209, 48199896002, 179884460799, 671337947194, 2505467327977, 9350531364714, 34896658130879, 130236101158802, 486047746504329 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

-3*a(n)^2 + b(n)^2 = 13, with the companion sequence b(n) = A077235(n).

The even part is A054491(n) with Diophantine companion A077236(n).

LINKS

Colin Barker, Table of n, a(n) for n = 0..1000

Tanya Khovanova, Recursive Sequences

Index entries for sequences related to Chebyshev polynomials.

Index entries for linear recurrences with constant coefficients, signature (4,-1).

FORMULA

a(n) = 2*S(n, 4)+S(n-1, 4), with S(n, x) = U(n, x/2), Chebyshev polynomials of 2nd kind, A049310. S(-1, x) = 0 and S(n, 4) = A001353(n+1).

G.f.: (2+x)/(1-4*x+x^2).

a(n) = 4*a(n-1)-a(n-2) with a(0)=2 and a(1)=9. - Philippe Deléham, Nov 16 2008

a(n) = -(5/6)*sqrt(3)*[2-sqrt(3)]^n+(5/6)*sqrt(3)*[2+sqrt(3)]^n+[2-sqrt(3)]^n+[2+sqrt(3)]^n, with n>=0. - Paolo P. Lava, Nov 20 2008

EXAMPLE

3*a(1)^2 + 13 = 3*81+13 = 256 = 16^2 = A077235(1)^2.

PROG

(PARI) Vec((2+x)/(1-4*x+x^2) + O(x^50)) \\ Colin Barker, Jun 16 2015

CROSSREFS

Cf. A077237 (even and odd parts).

Sequence in context: A120989 A280309 A010763 * A091526 A274750 A204444

Adjacent sequences:  A077231 A077232 A077233 * A077235 A077236 A077237

KEYWORD

nonn,easy

AUTHOR

Wolfdieter Lang, Nov 08 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 24 00:27 EST 2017. Contains 295164 sequences.