login
A077239
Bisection (odd part) of Chebyshev sequence with Diophantine property.
5
7, 37, 215, 1253, 7303, 42565, 248087, 1445957, 8427655, 49119973, 286292183, 1668633125, 9725506567, 56684406277, 330380931095, 1925601180293, 11223226150663, 65413755723685, 381259308191447, 2222142093424997, 12951593252358535, 75487417420726213
OFFSET
0,1
COMMENTS
a(n)^2 - 8*b(n)^2 = 17, with the companion sequence b(n)= A077413(n).
The even part is A077240(n) with Diophantine companion A054488(n).
FORMULA
a(n) = 6*a(n-1) - a(n-2), a(-1) := 5, a(0)=7.
a(n) = 2*T(n+1, 3)+T(n, 3), with T(n, x) Chebyshev's polynomials of the first kind, A053120. T(n, 3)= A001541(n).
G.f.: (7-5*x)/(1-6*x+x^2).
a(n) = (((3-2*sqrt(2))^n*(-8+7*sqrt(2))+(3+2*sqrt(2))^n*(8+7*sqrt(2))))/(2*sqrt(2)). - Colin Barker, Oct 12 2015
EXAMPLE
37 = a(1) = sqrt(8*A077413(1)^2 +17) = sqrt(8*13^2 + 17)= sqrt(1369) = 37.
MATHEMATICA
Table[2*ChebyshevT[n+1, 3] + ChebyshevT[n, 3], {n, 0, 19}] (* Jean-François Alcover, Dec 19 2013 *)
PROG
(PARI) Vec((7-5*x)/(1-6*x+x^2) + O(x^40)) \\ Colin Barker, Oct 12 2015
CROSSREFS
Cf. A077242 (even and odd parts).
Sequence in context: A126475 A274674 A255672 * A362087 A046235 A297329
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Nov 08 2002
STATUS
approved