login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A075528 Triangular numbers that are half other triangular numbers. 23
0, 3, 105, 3570, 121278, 4119885, 139954815, 4754343828, 161507735340, 5486508657735, 186379786627653, 6331426236682470, 215082112260576330, 7306460390622912753, 248204571168918457275, 8431648959352604634600, 286427860046819639119128 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

This is the sequence of 1/2 the areas, x(n)*y(n)/2, of the ordered Pythagorean triples (x(n), y(n)=x(n)+1, z(n)) with x(0)=0, y(0)=1, z(0)=1, a(0)=0 and x(1)=3, y(1)=4, z(1)=5, a(1)=3. - George F. Johnson, Aug 24 2012

LINKS

Colin Barker, Table of n, a(n) for n = 0..653

Martin V. Bonsangue, Gerald E. Gannon and Laura J. Pheifer, Misinterpretations can sometimes be a good thing, Math. Teacher, vol. 95, No. 6 (2002) pp. 446-449.

H. J. Hindin, Stars, hexes, triangular numbers and Pythagorean triples, J. Rec. Math., 16 (1983/1984), 191-193. (Annotated scanned copy)

Vladimir Pletser, Recurrent Relations for Multiple of Triangular Numbers being Triangular Numbers, arXiv:2101.00998 [math.NT], 2021.

Vladimir Pletser, Closed Form Equations for Triangular Numbers Multiple of Other Triangular Numbers, arXiv:2102.12392 [math.GM], 2021.

Vladimir Pletser, Triangular Numbers Multiple of Triangular Numbers and Solutions of Pell Equations, arXiv:2102.13494 [math.NT], 2021.

Vladimir Pletser, Congruence Properties of Indices of Triangular Numbers Multiple of Other Triangular Numbers, arXiv:2103.03019 [math.GM], 2021.

Vladimir Pletser, Searching for multiple of triangular numbers being triangular numbers, 2021.

Vladimir Pletser, Using Pell equation solutions to find all triangular numbers multiple of other triangular numbers, 2022.

Index entries for linear recurrences with constant coefficients, signature (35,-35,1).

FORMULA

a(n) = 3*A029546(n-1) = A029549(n)/2.

G.f.: 3*x/((1-x)*(1-34*x+x^2)).

From George F. Johnson, Aug 24 2012: (Start)

a(n) = ((3+2*sqrt(2))^(2*n+1) + (3-2*sqrt(2))^(2*n+1) - 6)/64.

8*a(n)+1 = A000129(2*n+1)^2.

16*a(n)+1 = A002315(n)^2.

128*a(n)^2 + 24*a(n) + 1 is a perfect square.

a(n+1) = 17*a(n) + 3/2 + 3*sqrt((8*a(n)+1)*(16*a(n)+1))/2.

a(n-1) = 17*a(n) + 3/2 - 3*sqrt((8*a(n)+1)*(16*a(n)+1))/2.

a(n-1)*a(n+1) = a(n)*(a(n)-3); a(n+1) = 34*a(n) - a(n-1) + 3.

a(n+1) = 35*a(n) - 35*a(n-1) + a(n-2); a(n) = A096979(2*n)/2.

a(n) = A084159(n)*A046729(n)/4 = A001652(n)*A046090(n)/4.

Lim_{n->infinity} a(n)/a(n-1) =  17 + 12*sqrt(2).

Lim_{n->infinity} a(n)/a(n-2) = (17 + 12*sqrt(2))^2 = 577 + 408*sqrt(2).

Lim_{n->infinity} a(n)/a(n-r) = (17 + 12*sqrt(2))^r.

Lim_{n->infinity} a(n-r)/a(n) = (17 + 12*sqrt(2))^(-r) = (17 - 12*sqrt(2))^r.

(End)

a(n) = 34*a(n-1) - a(n-2) + 3, n >= 2. - R. J. Mathar, Nov 07 2015

a(n) = A000217(A053141(n)). - R. J. Mathar, Aug 16 2019

a(n) = (a(n-1)*(a(n-1)-3))/a(n-2) for n > 2. - Vladimir Pletser, Apr 08 2020

MATHEMATICA

CoefficientList[ Series[ 3x/(1 - 35 x + 35 x^2 - x^3), {x, 0, 15}], x] (* Robert G. Wilson v, Jun 24 2011 *)

PROG

(PARI) concat(0, Vec(3*x/((1-x)*(1-34*x+x^2)) + O(x^20))) \\ Colin Barker, Jun 18 2015

CROSSREFS

Cf. A000129, A000217, A001652, A002315, A029546, A029549, A046090, A046729, A053141, A084159, A096979.

Sequence in context: A228309 A215945 A350986 * A352408 A334776 A346086

Adjacent sequences:  A075525 A075526 A075527 * A075529 A075530 A075531

KEYWORD

nonn,easy

AUTHOR

Christian G. Bower, Sep 19 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 2 11:46 EDT 2022. Contains 357205 sequences. (Running on oeis4.)