OFFSET
0,2
COMMENTS
This is the sequence of 1/2 the areas, x(n)*y(n)/2, of the ordered Pythagorean triples (x(n), y(n)=x(n)+1, z(n)) with x(0)=0, y(0)=1, z(0)=1, a(0)=0 and x(1)=3, y(1)=4, z(1)=5, a(1)=3. - George F. Johnson, Aug 24 2012
LINKS
Colin Barker, Table of n, a(n) for n = 0..653
Martin V. Bonsangue, Gerald E. Gannon and Laura J. Pheifer, Misinterpretations can sometimes be a good thing, Math. Teacher, vol. 95, No. 6 (2002) pp. 446-449.
H. J. Hindin, Stars, hexes, triangular numbers and Pythagorean triples, J. Rec. Math., 16 (1983/1984), 191-193. (Annotated scanned copy)
Vladimir Pletser, Recurrent Relations for Multiple of Triangular Numbers being Triangular Numbers, arXiv:2101.00998 [math.NT], 2021.
Vladimir Pletser, Closed Form Equations for Triangular Numbers Multiple of Other Triangular Numbers, arXiv:2102.12392 [math.GM], 2021.
Vladimir Pletser, Triangular Numbers Multiple of Triangular Numbers and Solutions of Pell Equations, arXiv:2102.13494 [math.NT], 2021.
Vladimir Pletser, Congruence Properties of Indices of Triangular Numbers Multiple of Other Triangular Numbers, arXiv:2103.03019 [math.GM], 2021.
Vladimir Pletser, Searching for multiple of triangular numbers being triangular numbers, 2021.
Vladimir Pletser, Using Pell equation solutions to find all triangular numbers multiple of other triangular numbers, 2022.
Index entries for linear recurrences with constant coefficients, signature (35,-35,1).
FORMULA
G.f.: 3*x/((1-x)*(1-34*x+x^2)).
From George F. Johnson, Aug 24 2012: (Start)
a(n) = ((3+2*sqrt(2))^(2*n+1) + (3-2*sqrt(2))^(2*n+1) - 6)/64.
8*a(n)+1 = A000129(2*n+1)^2.
16*a(n)+1 = A002315(n)^2.
128*a(n)^2 + 24*a(n) + 1 is a perfect square.
a(n+1) = 17*a(n) + 3/2 + 3*sqrt((8*a(n)+1)*(16*a(n)+1))/2.
a(n-1) = 17*a(n) + 3/2 - 3*sqrt((8*a(n)+1)*(16*a(n)+1))/2.
a(n-1)*a(n+1) = a(n)*(a(n)-3); a(n+1) = 34*a(n) - a(n-1) + 3.
a(n+1) = 35*a(n) - 35*a(n-1) + a(n-2); a(n) = A096979(2*n)/2.
Lim_{n->infinity} a(n)/a(n-1) = 17 + 12*sqrt(2).
Lim_{n->infinity} a(n)/a(n-2) = (17 + 12*sqrt(2))^2 = 577 + 408*sqrt(2).
Lim_{n->infinity} a(n)/a(n-r) = (17 + 12*sqrt(2))^r.
Lim_{n->infinity} a(n-r)/a(n) = (17 + 12*sqrt(2))^(-r) = (17 - 12*sqrt(2))^r.
(End)
a(n) = 34*a(n-1) - a(n-2) + 3, n >= 2. - R. J. Mathar, Nov 07 2015
a(n) = (a(n-1)*(a(n-1)-3))/a(n-2) for n > 2. - Vladimir Pletser, Apr 08 2020
MATHEMATICA
CoefficientList[ Series[ 3x/(1 - 35 x + 35 x^2 - x^3), {x, 0, 15}], x] (* Robert G. Wilson v, Jun 24 2011 *)
PROG
(PARI) concat(0, Vec(3*x/((1-x)*(1-34*x+x^2)) + O(x^20))) \\ Colin Barker, Jun 18 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Christian G. Bower, Sep 19 2002
STATUS
approved