login
A075528
Triangular numbers that are half other triangular numbers.
24
0, 3, 105, 3570, 121278, 4119885, 139954815, 4754343828, 161507735340, 5486508657735, 186379786627653, 6331426236682470, 215082112260576330, 7306460390622912753, 248204571168918457275, 8431648959352604634600, 286427860046819639119128
OFFSET
0,2
COMMENTS
This is the sequence of 1/2 the areas, x(n)*y(n)/2, of the ordered Pythagorean triples (x(n), y(n)=x(n)+1, z(n)) with x(0)=0, y(0)=1, z(0)=1, a(0)=0 and x(1)=3, y(1)=4, z(1)=5, a(1)=3. - George F. Johnson, Aug 24 2012
LINKS
Martin V. Bonsangue, Gerald E. Gannon and Laura J. Pheifer, Misinterpretations can sometimes be a good thing, Math. Teacher, vol. 95, No. 6 (2002) pp. 446-449.
H. J. Hindin, Stars, hexes, triangular numbers and Pythagorean triples, J. Rec. Math., 16 (1983/1984), 191-193. (Annotated scanned copy)
Vladimir Pletser, Recurrent Relations for Multiple of Triangular Numbers being Triangular Numbers, arXiv:2101.00998 [math.NT], 2021.
FORMULA
a(n) = 3*A029546(n-1) = A029549(n)/2.
G.f.: 3*x/((1-x)*(1-34*x+x^2)).
From George F. Johnson, Aug 24 2012: (Start)
a(n) = ((3+2*sqrt(2))^(2*n+1) + (3-2*sqrt(2))^(2*n+1) - 6)/64.
8*a(n)+1 = A000129(2*n+1)^2.
16*a(n)+1 = A002315(n)^2.
128*a(n)^2 + 24*a(n) + 1 is a perfect square.
a(n+1) = 17*a(n) + 3/2 + 3*sqrt((8*a(n)+1)*(16*a(n)+1))/2.
a(n-1) = 17*a(n) + 3/2 - 3*sqrt((8*a(n)+1)*(16*a(n)+1))/2.
a(n-1)*a(n+1) = a(n)*(a(n)-3); a(n+1) = 34*a(n) - a(n-1) + 3.
a(n+1) = 35*a(n) - 35*a(n-1) + a(n-2); a(n) = A096979(2*n)/2.
a(n) = A084159(n)*A046729(n)/4 = A001652(n)*A046090(n)/4.
Lim_{n->infinity} a(n)/a(n-1) = 17 + 12*sqrt(2).
Lim_{n->infinity} a(n)/a(n-2) = (17 + 12*sqrt(2))^2 = 577 + 408*sqrt(2).
Lim_{n->infinity} a(n)/a(n-r) = (17 + 12*sqrt(2))^r.
Lim_{n->infinity} a(n-r)/a(n) = (17 + 12*sqrt(2))^(-r) = (17 - 12*sqrt(2))^r.
(End)
a(n) = 34*a(n-1) - a(n-2) + 3, n >= 2. - R. J. Mathar, Nov 07 2015
a(n) = A000217(A053141(n)). - R. J. Mathar, Aug 16 2019
a(n) = (a(n-1)*(a(n-1)-3))/a(n-2) for n > 2. - Vladimir Pletser, Apr 08 2020
MATHEMATICA
CoefficientList[ Series[ 3x/(1 - 35 x + 35 x^2 - x^3), {x, 0, 15}], x] (* Robert G. Wilson v, Jun 24 2011 *)
PROG
(PARI) concat(0, Vec(3*x/((1-x)*(1-34*x+x^2)) + O(x^20))) \\ Colin Barker, Jun 18 2015
KEYWORD
nonn,easy
AUTHOR
Christian G. Bower, Sep 19 2002
STATUS
approved