login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A096979 Sum of the areas of the first n+1 Pell triangles. 4
0, 1, 6, 36, 210, 1225, 7140, 41616, 242556, 1413721, 8239770, 48024900, 279909630, 1631432881, 9508687656, 55420693056, 323015470680, 1882672131025, 10973017315470, 63955431761796, 372759573255306, 2172602007770041 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Convolution of A059841(n) and A001109(n+1).

Partial sums of A084158.

LINKS

Table of n, a(n) for n=0..21.

S. Falcon, On the Sequences of Products of Two k-Fibonacci Numbers, American Review of Mathematics and Statistics, March 2014, Vol. 2, No. 1, pp. 111-120.

Roger B. Nelson, Multi-Polygonal Numbers, Mathematics Magazine, Vol. 89, No. 3 (June 2016), pp. 159-164.

Index entries for linear recurrences with constant coefficients, signature (6,0,-6,1).

FORMULA

G.f.: x/((1-x)*(1+x)*(1-6*x+x^2)).

a(n) = 6*a(n-1)-6*a(n-3)+a(n-4).

a(n) = (3-2*sqrt(2))^n*(3/32-sqrt(2)/16)+(3+2*sqrt(2))^n*(sqrt(2)/16+3/32)-(-1)^n/16-1/8.

a(n) = sum{k=0..n, (sqrt(2)*(sqrt(2)+1)^(2*k)/8-sqrt(2)*(sqrt(2)-1)^(2*k)/8)*((1+(-1)^(n-k))/2.

a(n) = sum{k=0..n, A001029(k)*A001029(k+1)/2}.

a(n) = (A001333(n+1)^2 - 1)/8 = ((A000129(n) + A000129(n+1))^2 - 1)/8. - Richard R. Forberg, Aug 25 2013

a(n) = A002620(A000129(n+1)) = A000217(A048739(n-1)), n > 0. - Ivan N. Ianakiev, Jun 21 2014

MATHEMATICA

Accumulate[LinearRecurrence[{5, 5, -1}, {0, 1, 5}, 30]] (* Harvey P. Dale, Sep 07 2011 *)

LinearRecurrence[{6, 0, -6, 1}, {0, 1, 6, 36}, 22] (* Ray Chandler, Aug 03 2015 *)

CROSSREFS

Cf. A096977, A064831, A096978.

Sequence in context: A269603 A027910 A075848 * A269464 A123887 A105492

Adjacent sequences:  A096976 A096977 A096978 * A096980 A096981 A096982

KEYWORD

easy,nonn

AUTHOR

Paul Barry, Jul 17 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 10 20:55 EST 2018. Contains 318049 sequences. (Running on oeis4.)