This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A084159 Pell oblongs. 14
 1, 3, 21, 119, 697, 4059, 23661, 137903, 803761, 4684659, 27304197, 159140519, 927538921, 5406093003, 31509019101, 183648021599, 1070379110497, 6238626641379, 36361380737781, 211929657785303, 1235216565974041 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Essentially the same as A046727. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (5,5,-1) FORMULA a(n) = ((sqrt(2)+1)^(2*n+1) - (sqrt(2)-1)^(2*n+1) + 2*(-1)^n)/4. a(n) = 5*a(n-1) + 5*a(n-2) - a(n-3). - Paul Curtz, May 17 2008 G.f.: (1-x)^2/((1+x)*(1-6*x+x^2)). - R. J. Mathar, Sep 17 2008 a(n) = A078057(n)*A001333(n). - R. J. Mathar, Jul 08 2009 a(n) = A001333(n)*A001333(n+1). From Peter Bala, May 01 2012: (Start) a(n) = (-1)^n*R(n,-4), where R(n,x) is the n-th row polynomial of A211955. a(n) = (-1)^n*1/u*T(n,u)*T(n+1,u) with u = sqrt(-1) and T(n,x) the Chebyshev polynomial of the first kind. a(n) = (-1)^n + 4*Sum_{k = 1..n} (-1)^(n-k)*8^(k-1)*binomial(n+k,2*k). Recurrence equations: a(n) = 6*a(n-1) - a(n-2) + 4*(-1)^n, with a(0) = 1 and a(1) = 3; a(n)*a(n-2) = a(n-1)*(a(n-1)+4*(-1)^n). Sum_{k >= 0} (-1)^k/a(k) = 1/sqrt(2). 1 - 2*(Sum_{k = 0..n} (-1)^k/a(k))^2 = (-1)^(n+1)/A090390(n+1). (End) MATHEMATICA Join[{1}, Table[Numerator[FromContinuedFraction[ContinuedFraction[Sqrt[2], n]]], {n, 2, 50}] * Table[Numerator[FromContinuedFraction[ContinuedFraction[Sqrt[2], n]]], {n, 1, 49}]] (* Vladimir Joseph Stephan Orlovsky, Jan 15 2011 *) LinearRecurrence[{5, 5, -1}, {1, 3, 21}, 30] (* Harvey P. Dale, Aug 04 2019 *) PROG (MAGMA) [Floor(((Sqrt(2)+1)^(2*n+1)-(Sqrt(2)-1)^(2*n+1)+2*(-1)^n)/4): n in [0..30]]; // Vincenzo Librandi, Aug 13 2011 CROSSREFS Cf. A046727 (same sequence except for first term). Cf. A084158, A084175, A001654. Cf. A090390, A182432, A211955. Sequence in context: A005057 A092634 A178537 * A046727 A283421 A117512 Adjacent sequences:  A084156 A084157 A084158 * A084160 A084161 A084162 KEYWORD easy,nonn AUTHOR Paul Barry, May 18 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 23 22:15 EDT 2019. Contains 328373 sequences. (Running on oeis4.)