This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A075193 Expansion of (1-2*x)/(1+x-x^2). 5
 1, -3, 4, -7, 11, -18, 29, -47, 76, -123, 199, -322, 521, -843, 1364, -2207, 3571, -5778, 9349, -15127, 24476, -39603, 64079, -103682, 167761, -271443, 439204, -710647, 1149851, -1860498, 3010349, -4870847, 7881196, -12752043, 20633239, -33385282, 54018521, -87403803, 141422324 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS "Inverted" Lucas numbers: The g.f. is obtained inserting 1/x into the g.f. of Lucas sequence and dividing by x. The closed form is a(n)=(-1)^n*a^(n+1)+(-1)^n*b^(n+1), where a=golden ratio and b=1-a, so that a(n)=(-1)^n*L(n+1), L(n)=Lucas numbers. LINKS Alois P. Heinz, Table of n, a(n) for n = 0..1000 Tanya Khovanova, Recursive Sequences Index entries for linear recurrences with constant coefficients, signature (-1,1). FORMULA a(n) = -a(n-1)+a(n-2), a(0)=1, a(1)=-3. a(n) = term (1,1) in the 1x2 matrix [1,-2] * [-1,1; 1,0]^n. - Alois P. Heinz, Jul 31 2008 a(n) = A186679(n)+A186679(n-2) for n>1. - Reinhard Zumkeller, Feb 25 2011 a(n) = A039834(n+1)-2*A039834(n). - R. J. Mathar, Sep 27 2014 MAPLE a:= n-> (Matrix([[1, -2]]). Matrix([[-1, 1], [1, 0]])^(n))[1, 1]: seq(a(n), n=0..45); # Alois P. Heinz, Jul 31 2008 MATHEMATICA CoefficientList[Series[(1 - 2z)/(1 + z - z^2), {z, 0, 40}], z] PROG (Haskell) a075193 n = a075193_list !! n a075193_list = 1 : -3 : zipWith (-) a075193_list (tail a075193_list) -- Reinhard Zumkeller, Sep 15 2015 CROSSREFS Cf. A000032. Sequence in context: A093090 A193686 A000204 * A042433 A024319 A041209 Adjacent sequences:  A075190 A075191 A075192 * A075194 A075195 A075196 KEYWORD easy,sign AUTHOR Mario Catalani (mario.catalani(AT)unito.it), Sep 07 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.