login
A024319
a(n) = s(1)*t(n) + s(2)*t(n-1) + ... + s(k)*t(n+1-k), where k = floor((n+1)/2), s = A023531, t = (Lucas numbers).
17
0, 0, 3, 4, 7, 11, 18, 29, 58, 94, 152, 246, 398, 644, 1042, 1686, 2804, 4537, 7341, 11878, 19219, 31097, 50316, 81413, 131729, 213142, 345714, 559377, 905091, 1464468, 2369559, 3834027, 6203586
OFFSET
1,3
LINKS
FORMULA
a(n) = Sum_{j=1..floor((n+1)/2)} A023531(j)*Lucas(n-j+1). - G. C. Greubel, Jan 19 2022
MATHEMATICA
A023531[n_]:= SquaresR[1, 8n+9]/2;
a[n_]:= Sum[A023531[j]*LucasL[n-j+1], {j, Floor[(n+1)/2]}];
Table[a[n], {n, 40}] (* G. C. Greubel, Jan 19 2022 *)
PROG
(Magma)
A023531:= func< n | IsIntegral( (Sqrt(8*n+9) -3)/2 ) select 1 else 0 >;
[ (&+[A023531(j)*Lucas(n-j+1): j in [1..Floor((n+1)/2)]]) : n in [1..40]]; // G. C. Greubel, Jan 19 2022
(Sage)
def A023531(n):
if ((sqrt(8*n+9) -3)/2).is_integer(): return 1
else: return 0
[sum( A023531(j)*lucas_number2(n-j+1, 1, -1) for j in (1..floor((n+1)/2)) ) for n in (1..40)] # G. C. Greubel, Jan 19 2022
KEYWORD
nonn
STATUS
approved