login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A075196
Table T(n,k) by antidiagonals: T(n,k) = number of partitions of n balls of k colors.
12
1, 2, 2, 3, 6, 3, 4, 12, 14, 5, 5, 20, 38, 33, 7, 6, 30, 80, 117, 70, 11, 7, 42, 145, 305, 330, 149, 15, 8, 56, 238, 660, 1072, 906, 298, 22, 9, 72, 364, 1260, 2777, 3622, 2367, 591, 30, 10, 90, 528, 2198, 6174, 11160, 11676, 6027, 1132, 42, 11, 110, 735, 3582, 12292, 28784, 42805, 36450, 14873, 2139, 56
OFFSET
1,2
COMMENTS
For k>=1, n->infinity is log(T(n,k)) ~ (1+1/k) * k^(1/(k+1)) * Zeta(k+1)^(1/(k+1)) * n^(k/(k+1)). - Vaclav Kotesovec, Mar 08 2015
LINKS
FORMULA
T(n,k) = Sum_{i=0..k} C(k,i) * A255903(n,i). - Alois P. Heinz, Mar 10 2015
EXAMPLE
1, 2, 3, 4, 5, ...
2, 6, 12, 20, 30, ...
3, 14, 38, 80, 145, ...
5, 33, 117, 305, 660, ...
7, 70, 330, 1072, 2777, ...
MAPLE
with(numtheory):
A:= proc(n, k) option remember; local d, j;
`if`(n=0, 1, add(add(d*binomial(d+k-1, k-1),
d=divisors(j)) *A(n-j, k), j=1..n)/n)
end:
seq(seq(A(n, 1+d-n), n=1..d), d=1..12); # Alois P. Heinz, Sep 26 2012
MATHEMATICA
Transpose[Table[nn=6; p=Product[1/(1- x^i)^Binomial[i+n, n], {i, 1, nn}]; Drop[CoefficientList[Series[p, {x, 0, nn}], x], 1], {n, 0, nn}]]//Grid (* Geoffrey Critzer, Sep 27 2012 *)
CROSSREFS
Rows 1-3: A000027, A002378, A162147.
Main diagonal: A075197.
Cf. A255903.
Sequence in context: A183474 A294034 A210220 * A196912 A197079 A208340
KEYWORD
nonn,tabl
AUTHOR
Christian G. Bower, Sep 07 2002
STATUS
approved