login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A075196 Table T(n,k) by antidiagonals: T(n,k) = number of partitions of n balls of k colors. 12
1, 2, 2, 3, 6, 3, 4, 12, 14, 5, 5, 20, 38, 33, 7, 6, 30, 80, 117, 70, 11, 7, 42, 145, 305, 330, 149, 15, 8, 56, 238, 660, 1072, 906, 298, 22, 9, 72, 364, 1260, 2777, 3622, 2367, 591, 30, 10, 90, 528, 2198, 6174, 11160, 11676, 6027, 1132, 42, 11, 110, 735, 3582, 12292, 28784, 42805, 36450, 14873, 2139, 56 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

For k>=1, n->infinity is log(T(n,k)) ~ (1+1/k) * k^(1/(k+1)) * Zeta(k+1)^(1/(k+1)) * n^(k/(k+1)). - Vaclav Kotesovec, Mar 08 2015

LINKS

Alois P. Heinz, Rows n = 1..141, flattened

FORMULA

T(n,k) = Sum_{i=0..k} C(k,i) * A255903(n,i). - Alois P. Heinz, Mar 10 2015

EXAMPLE

1,  2,   3,    4,    5, ...

2,  6,  12,   20,   30, ...

3, 14,  38,   80,  145, ...

5, 33, 117,  305,  660, ...

7, 70, 330, 1072, 2777, ...

MAPLE

with(numtheory):

A:= proc(n, k) option remember; local d, j;

      `if`(n=0, 1, add(add(d*binomial(d+k-1, k-1),

       d=divisors(j)) *A(n-j, k), j=1..n)/n)

    end:

seq(seq(A(n, 1+d-n), n=1..d), d=1..12);  # Alois P. Heinz, Sep 26 2012

MATHEMATICA

Transpose[Table[nn=6; p=Product[1/(1- x^i)^Binomial[i+n, n], {i, 1, nn}]; Drop[CoefficientList[Series[p, {x, 0, nn}], x], 1], {n, 0, nn}]]//Grid  (* Geoffrey Critzer, Sep 27 2012 *)

CROSSREFS

Columns 1-10: A000041, A005380, A217093, A255050, A255052, A270239, A270240, A270241, A270242, A270243.

Rows 1-3: A000027, A002378, A162147.

Main diagonal: A075197.

Cf. A255903.

Sequence in context: A047662 A183474 A210220 * A196912 A197079 A208340

Adjacent sequences:  A075193 A075194 A075195 * A075197 A075198 A075199

KEYWORD

nonn,tabl

AUTHOR

Christian G. Bower, Sep 07 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 11 00:29 EST 2016. Contains 279033 sequences.