|
|
A073425
|
|
a(0)=0; for n>0, a(n) = number of primes not exceeding n-th composite number.
|
|
12
|
|
|
0, 2, 3, 4, 4, 4, 5, 6, 6, 6, 7, 8, 8, 8, 9, 9, 9, 9, 9, 10, 11, 11, 11, 11, 11, 12, 12, 12, 13, 14, 14, 14, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 17, 18, 18, 18, 18, 18, 19, 19, 19, 20, 21, 21, 21, 21, 21, 22, 22, 22, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 24, 25, 25, 25, 26
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
a(n-1) = A018252(n) - n. a(n-1) = inverse (frequency distribution) sequence of A014689(n), i.e. number of terms of sequence A014689(n) less than n. a(n) = A073169(n+1) - 1, for n >= 1. For n >= 1: a(n) + 1 = A073169(n) = the number of set {1, primes}, i.e. (A008578) less than (n)-th composite numbers (A002828(n)). a(n-1) = The number of primes (A000040(n)) less than n-th nonprime (A018252(n)). - Jaroslav Krizek, Jun 27 2009
|
|
LINKS
|
Table of n, a(n) for n=0..75.
|
|
FORMULA
|
a(n) = A000720(A002808(n)).
a(n) ~ n. - Charles R Greathouse IV, Sep 02 2015
|
|
EXAMPLE
|
n=100: composite[100]=133,Pi[133]=32=a(100)
|
|
MATHEMATICA
|
c[x_] := FixedPoint[x+PrimePi[ # ]+1&, x] Table[PrimePi[c[w]], {w, 1, 128}]
With[{nn=150}, PrimePi/@Complement[Range[nn], Prime[Range[PrimePi[nn]]]]] (* Harvey P. Dale, Jun 26 2013 *)
|
|
CROSSREFS
|
Cf. A065890, A073426, A000720, A002808, A000040, A018252, A158611, A073169.
Sequence in context: A284359 A167991 A173073 * A087876 A006158 A340203
Adjacent sequences: A073422 A073423 A073424 * A073426 A073427 A073428
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Labos Elemer, Jul 31 2002
|
|
EXTENSIONS
|
Edited by N. J. A. Sloane, Jul 04 2009 at the suggestion of R. J. Mathar
Correction for change of offset in A158611 and A008578 in Aug 2009 Jaroslav Krizek, Jan 27 2010
|
|
STATUS
|
approved
|
|
|
|