login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A072182
A Wallis pair (x,y) satisfies sigma(x^2) = sigma(y^2); sequence gives x's for Wallis pairs with x < y (ordered by values of x, then y).
5
4, 12, 28, 36, 44, 52, 68, 76, 84, 92, 108, 116, 124, 132, 148, 156, 164, 172, 188, 196, 204, 212, 228, 236, 244, 252, 268, 276, 284, 292, 308, 316, 324, 326, 332, 348, 356, 364, 372, 388, 396, 404, 406, 412, 428, 436, 444, 452, 468, 476, 484, 492, 508, 516
OFFSET
1,1
COMMENTS
4*A045572 is included in this sequence. - Benoit Cloitre, Oct 22 2002
D. Johnson remarks that some terms are repeated, e.g., a(139)=a(140)=1284 forms a Wallis pair with A072186(139)=1528 and also with A072186(140)=1605. - M. F. Hasler, Sep 15 2013
REFERENCES
I. Kaplansky, The challenges of Fermat, Wallis and Ozanam (and several related challenges): II. Fermat's second challenge, Preprint, 2002.
LINKS
EXAMPLE
The first few pairs are all multiples of the first pair (4,5): (4, 5), (12, 15), (28, 35), (36, 45), (44, 55), (52, 65), ...
MATHEMATICA
w = {}; m = 550;
Do[q = DivisorSigma[1, x^2]; sq = Sqrt[q] // Floor; Do[If[q == DivisorSigma[1, y^2], AppendTo[w, {x, y}]], {y, x+1, sq}], {x, 1, m}];
w[[All, 1]] (* Jean-François Alcover, Oct 01 2019 *)
PROG
(PARI) {w=[]; m=550; for(x=1, m, q=sigma(x^2); sq=sqrtint(q); for(y=x+1, sq, if(q==sigma(y^2), w=concat(w, [[x, y]])))); for(j=1, matsize(w)[2], print1(w[j][1], ", "))}
(Haskell)
a072182 n = a072182_list !! (n-1)
(a072182_list, a072186_list) = unzip wallisPairs
wallisPairs = [(x, y) | (y, sy) <- tail ws,
(x, sx) <- takeWhile ((< y) . fst) ws, sx == sy]
where ws = zip [1..] $ map a000203 $ tail a000290_list
-- Reinhard Zumkeller, Sep 17 2013
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Oct 19 2002
EXTENSIONS
Extended by Klaus Brockhaus and Benoit Cloitre, Oct 22 2002
STATUS
approved