OFFSET
1,1
COMMENTS
4*A045572 is included in this sequence. - Benoit Cloitre, Oct 22 2002
D. Johnson remarks that some terms are repeated, e.g., a(139)=a(140)=1284 forms a Wallis pair with A072186(139)=1528 and also with A072186(140)=1605. - M. F. Hasler, Sep 15 2013
REFERENCES
I. Kaplansky, The challenges of Fermat, Wallis and Ozanam (and several related challenges): II. Fermat's second challenge, Preprint, 2002.
LINKS
Donovan Johnson, Table of n, a(n) for n = 1..10000
EXAMPLE
The first few pairs are all multiples of the first pair (4,5): (4, 5), (12, 15), (28, 35), (36, 45), (44, 55), (52, 65), ...
MATHEMATICA
w = {}; m = 550;
Do[q = DivisorSigma[1, x^2]; sq = Sqrt[q] // Floor; Do[If[q == DivisorSigma[1, y^2], AppendTo[w, {x, y}]], {y, x+1, sq}], {x, 1, m}];
w[[All, 1]] (* Jean-François Alcover, Oct 01 2019 *)
PROG
(PARI) {w=[]; m=550; for(x=1, m, q=sigma(x^2); sq=sqrtint(q); for(y=x+1, sq, if(q==sigma(y^2), w=concat(w, [[x, y]])))); for(j=1, matsize(w)[2], print1(w[j][1], ", "))}
(Haskell)
a072182 n = a072182_list !! (n-1)
(a072182_list, a072186_list) = unzip wallisPairs
wallisPairs = [(x, y) | (y, sy) <- tail ws,
(x, sx) <- takeWhile ((< y) . fst) ws, sx == sy]
where ws = zip [1..] $ map a000203 $ tail a000290_list
-- Reinhard Zumkeller, Sep 17 2013
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Oct 19 2002
EXTENSIONS
Extended by Klaus Brockhaus and Benoit Cloitre, Oct 22 2002
STATUS
approved