login
A072186
A Wallis pair (x,y) satisfies sigma(x^2) = sigma(y^2); sequence gives y's for Wallis pairs with x < y (ordered by values of x).
5
5, 15, 35, 45, 55, 65, 85, 95, 105, 115, 135, 145, 155, 165, 185, 195, 205, 215, 235, 245, 255, 265, 285, 295, 305, 315, 335, 345, 355, 365, 385, 395, 405, 407, 415, 435, 445, 455, 465, 485, 495, 505, 489, 515, 535, 545, 555, 565, 585, 595, 605, 615, 635
OFFSET
1,1
COMMENTS
5*A045572 is included in this sequence. - Benoit Cloitre, Oct 22 2002
REFERENCES
I. Kaplansky, The challenges of Fermat, Wallis and Ozanam (and several related challenges): II. Fermat's second challenge, Preprint, 2002.
LINKS
EXAMPLE
The first few pairs are all multiples of the first pair (4,5): (4, 5), (12, 15), (28, 35), (36, 45), (44, 55), (52, 65), ...
MATHEMATICA
w = {}; m = 550;
Do[q = DivisorSigma[1, x^2]; sq = Sqrt[q] // Floor; Do[If[q == DivisorSigma[1, y^2], AppendTo[w, {x, y}]], {y, x + 1, sq}], {x, 1, m}];
w[[All, 2]] (* Jean-François Alcover, Oct 01 2019 *)
PROG
(PARI) {w=[]; m=550; for(x=1, m, q=sigma(x^2); sq=sqrtint(q); for(y=x+1, sq, if(q==sigma(y^2), w=concat(w, [[x, y]])))); for(j=1, matsize(w)[2], print1(w[j][2], ", "))}
(Haskell)
a072186 n = a072186_list !! (n-1)
-- a072186_list defined in A072182. -- Reinhard Zumkeller, Sep 18 2013
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Oct 19 2002
EXTENSIONS
Extended by Klaus Brockhaus and Benoit Cloitre, Oct 22 2002
STATUS
approved