The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A072180 Numbers n such that 2^n - n^2 is prime. 16
 5, 7, 9, 17, 19, 51, 53, 81, 83, 119, 189, 219, 227, 301, 455, 461, 623, 2037, 2221, 2455, 3547, 5515, 6825, 8303, 9029, 12103, 49989, 55525, 64773, 80307, 119087, 141915, 192023, 205933, 301683, 307407 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The numbers corresponding to n = 2037, 2221, 3547 and 5515 have been certified prime with Primo. - Rick L. Shepherd, Nov 10 2002 The remaining n's > 1000 correspond only to probable primes. Certainly n must be odd. Let N(n) = 2^n - n^2. Additional restrictions come from the facts that 7 | N(n) if n is in {2, 4, 5, 6, 10, 15} mod 21 and 17 | N(n) if n is in {31, 57, 61, 71, 107, 109, 113, 131} mod 136. - Daniel Gronau, Jul 06 2002 Henri Lifchitz found the terms > 40000 in 2001 and 119087 in March 2002. - Hugo Pfoertner, Nov 16 2004 LINKS Henri Lifchitz, Renaud Lifchitz, PRP Top Records. 2^n-n^2. MATHEMATICA Do[ If[ PrimeQ[ 2^n - n^2], Print[n]], {n, 1, 22850, 2}] PROG (PARI) is(n)=isprime(2^n-n^2) \\ Charles R Greathouse IV, Feb 17 2017 CROSSREFS Cf. A024012, A064539, A075896, A072164. Sequence in context: A294908 A036708 A124822 * A162848 A259359 A024571 Adjacent sequences:  A072177 A072178 A072179 * A072181 A072182 A072183 KEYWORD hard,nonn AUTHOR Daniel Gronau (Daniel.Gronau(AT)gmx.de), Jun 30 2002 EXTENSIONS Edited and extended by Robert G. Wilson v, Jul 01 2002 More terms from Hugo Pfoertner, Nov 16 2004 More terms from Henri Lifchitz submitted by Ray Chandler, Mar 02 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 20 20:02 EDT 2020. Contains 337265 sequences. (Running on oeis4.)