login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A071951 Triangle of Legendre-Stirling numbers of the second kind T(n,j), n >= 1, 1 <= j <= n, read by rows. 22
1, 2, 1, 4, 8, 1, 8, 52, 20, 1, 16, 320, 292, 40, 1, 32, 1936, 3824, 1092, 70, 1, 64, 11648, 47824, 25664, 3192, 112, 1, 128, 69952, 585536, 561104, 121424, 7896, 168, 1, 256, 419840, 7096384, 11807616, 4203824, 453056, 17304, 240, 1, 512, 2519296, 85576448, 243248704, 137922336, 23232176, 1422080, 34584, 330, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Robert Israel, Table of n, a(n) for n = 1..10011 (first 141 rows, flattened)

G. E. Andrews, W. Gawronski and L. L. Littlejohn, The Legendre-Stirling Numbers, Discrete Mathematics, Volume 311, Issue 14, 28 July 2011, Pages 1255-1272.

M. W. Coffey, M. C. Lettington, On Fibonacci Polynomial Expressions for Sums of mth Powers, their implications for Faulhaber's Formula and some Theorems of Fermat, arXiv:1510.05402 [math.NT], 2015.

R. B. Corcino, K. J. M. Gonzales, M. J. C. Loquias and E. L. Tan, Dually weighted Stirling-type sequences, arXiv:1302.4694 [math.CO], 2013.

R. B. Corcino, K. J. M. Gonzales, M. J. C. Loquias and E. L. Tan, Dually weighted Stirling-type sequences, Europ. J. Combin., 43, 2015, 55-67.

José L. Cereceda, A refinement of Lang's formula for the sum of powers of integers, arXiv:2301.02141 [math.NT], 2023.

E. S. Egge, Legendre-Stirling permutations, Eur. J. Combin. 13 (2010) 1735-1750.

W. N. Everitt, L. L. Littlejohn and R. Wellman, Legendre polynomials, Legendre-Stirling numbers and the left-definite spectral analysis of the Legendre differential expression, J. Comput. Appl. Math. 148, 2002, 213-238.

H. Li, T. MacHenry, Permanents and Determinants, Weighted Isobaric Polynomials, and Integer Sequences, J. Int. Seq. 16 (2013) #13.3.5, Theorem 43.

L. L. Littlejohn and R. Wellman, A general left-definite theory for certain self-adjoint operators with applications to differential equations, J. Differential Equations, 181(2), 2002, 280-339.

FORMULA

T(n, j) = Sum_{r=1..j} (-1)^(r+j)*(2*r+1)*(r^2+r)^n/((r+j+1)!*(j-r)!).

G.f. for j-th column (without leading zeros): 1/Product_{r=1..j} (1 - r*(r+1)*x), j >= 1. From eq.(4.5) of the Everitt et al. paper.

A135921(n+1) = row sums. - Michael Somos, Feb 25 2012

Sum_{n=j..m} binomial(m,n)*T(n,j)*4^(n-j) = A160562(m,j) for 1 <= j <= m. - Werner Schulte, Dec 03 2015

EXAMPLE

The triangle begins:

n\j 1 2 3 4 5 6 7 8 9 ...

1: 1

2: 2 1

3: 4 8 1

4: 8 52 20 1

5: 16 320 292 40 1

6: 32 1936 3824 1092 70 1

7: 64 11648 47824 25664 3192 112 1

8: 128 69952 585536 561104 121424 7896 168 1

9: 256 419840 7096384 11807616 4203824 453056 17304 240 1

...

Row 10: 512 2519296 85576448 243248704 137922336 23232176 1422080 34584 330 1. Reformatted by Wolfdieter Lang, Apr 10 2013

MAPLE

N:= 20: # to get the first N rows, flattened

for j from 1 to N do S[j]:= series(x^j/mul(1-r*(r+1)*x, r=1..j), x, N+1) od:

seq(seq(coeff(S[j], x, i), j=1..i), i=1..N); # Robert Israel, Dec 03 2015

# alternative

A071951 := proc(n, k)

option remember;

if k =0 then

if n = 0 then

1;

else

0;

end if;

elif n = 0 then

if k =0 then

1;

else

0;

end if;

else

procname(n-1, k-1)+k*(k+1)*procname(n-1, k) ;

end if;

end proc: # R. J. Mathar, Jun 30 2018

MATHEMATICA

Flatten[ Table[ Sum[(-1)^{r + j}(2r + 1)(r^2 + r)^n/((r + j + 1)!(j - r)!), {r, j}], {n, 10}, {j, n}]]

PROG

(PARI) {T(n, k) = sum( i=0, k, (-1)^(i+k) * (2*i + 1) * (i*i + i)^n / (k-i)! / (k+i+1)! )} /* Michael Somos, Feb 25 2012 */

(Magma) [[(&+[(-1)^(r+j)*(2*r+1)*(r^2+r)^n/(Factorial(r+j+1)*Factorial(j-r)): r in [1..j]]): j in [1..n]]: n in [1..12]]; // G. C. Greubel, Mar 16 2019

(Sage) [[sum( (-1)^(r+j)*(2*r+1)*(r^2+r)^n/(factorial(r+j+1)*factorial(j-r)) for r in (1..j)) for j in (1..n)] for n in (1..12)] # G. C. Greubel, Mar 16 2019

CROSSREFS

Diagonals give A007290, A000079, A016129, A016309.

The column sequences are A000079 (powers of 2), A016129, A016309, A071952, A089274, A089277.

Cf. A089278, A089500, A160562.

Sequence in context: A221062 A220916 A221632 * A264059 A275364 A160323

Adjacent sequences: A071948 A071949 A071950 * A071952 A071953 A071954

KEYWORD

nonn,tabl

AUTHOR

N. J. A. Sloane, Jun 16 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 4 17:27 EST 2023. Contains 360059 sequences. (Running on oeis4.)