login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A135921 O.g.f.: A(x) = Sum_{n>=0} x^n / Product_{k=0..n} (1 - k*(k+1)*x). 2
1, 1, 3, 13, 81, 669, 6955, 88505, 1346209, 23998521, 493956467, 11596542533, 307301505073, 9110471500693, 299893197116059, 10888674034993905, 433549376981078593, 18833037527449398129, 888439543634687700579 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..18.

FORMULA

a(n+1) = row sums of A071951. - Michael Somos, Feb 25 2012

G.f.: (G(0) - 1)/(x-1) where G(k) = 1 - 1/(1-(k+1)*(k+2)*x)/(1-x/(x-1/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 16 2013

EXAMPLE

O.g.f.: A(x) = 1 + x/(1-2x) + x^2/((1-2x)*(1-6x)) + x^3/((1-2x)*(1-6x)*(1-12x)) + x^4/((1-2x)*(1-6x)*(1-12x)*(1-20x)) + ...

Also generated by iterated binomial transforms in the following way:

[1,3,13,81,669,6955,88505,...] = BINOMIAL^2([1,1,5,31,253,2673,34833,..]);

[1,5,31,253,2673,34833,541879,...] = BINOMIAL^4([1,1,7,57,577,7389,...]);

[1,7,57,577,7389,115983,2151493,...] = BINOMIAL^6([1,1,9,91,1101,16497,...]);

[1,9,91,1101,16497,301669,..] = BINOMIAL^8([1,1,11,133,1873,32061,..]);

[1,11,133,1873,32061,666579,...] = BINOMIAL^10([1,1,13,183,2941,56529,...]);

etc.

PROG

(PARI) a(n)=polcoeff(sum(k=0, n, x^k/prod(j=0, k, 1-j*(j+1)*x+x*O(x^n))), n)

(PARI) {a(n) = sum( k=0, n, sum( i=0, k, (-1)^(i+k) * (2*i + 1) * (i*i + i)^n / (k-i)! / (k+i+1)! ))} /* Michael Somos, Feb 25 2012 */

CROSSREFS

Cf. A071951, A135920, A124373.

Sequence in context: A020014 A184972 A160882 * A005923 A089461 A000684

Adjacent sequences:  A135918 A135919 A135920 * A135922 A135923 A135924

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Dec 06 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 25 20:52 EDT 2020. Contains 334595 sequences. (Running on oeis4.)