login
A160323
Continued fraction for (Gamma(1/6)*Gamma(1/3))/(3*sqrt(Pi)).
2
2, 1, 4, 8, 1, 27, 1, 19, 1, 25, 3, 6, 4, 1, 37, 1, 1, 7, 1, 75, 1, 13, 1, 2, 6, 1, 16, 1, 6, 2, 1, 1, 3, 1, 5, 3, 36, 1, 4, 17, 1, 2, 1, 1, 1, 12, 1, 1, 7, 1, 3, 1, 10, 13, 3, 7, 3, 1, 9, 206, 1, 1, 1, 3, 34, 1, 10, 1, 1, 7, 1, 705, 1, 4, 4, 1, 1, 2, 1, 4, 2, 2, 1, 3, 8, 1, 19, 2, 1, 11, 3, 1, 725, 1, 37
OFFSET
0,1
COMMENTS
gamma(1/6)*gamma(1/3)/(3*sqrt(Pi)) = gamma(1/3)^3/(2^(1/3)*sqrt(3)*Pi).
LINKS
EXAMPLE
2.804364210650908522350038158... = 2 + 1/(1 + 1/(4 + 1/(8 + 1/(1 + ...)))).
MATHEMATICA
ContinuedFraction[(Gamma[1/6]*Gamma[1/3])/(3*Sqrt[Pi]), 100] (* G. C. Greubel, Oct 05 2018 *)
PROG
(PARI) { allocatemem(932245000); default(realprecision, 4100); x=gamma(1/3)^3/(2^(1/3)*sqrt(3)*Pi); x=contfrac(x); for (n=1, 4000, write("b160323.txt", n-1, " ", x[n])); } \\ Harry J. Smith, Jun 20 2009
(Magma) SetDefaultRealField(RealField(100)); R:= RealField(); ContinuedFraction((Gamma(1/6)*Gamma(1/3))/(3*Sqrt(Pi(R)))); // G. C. Greubel, Oct 05 2018
CROSSREFS
Cf. A118292 (decimal expansion).
Sequence in context: A071951 A264059 A275364 * A340469 A128411 A216046
KEYWORD
nonn,cofr
AUTHOR
Harry J. Smith, May 09 2009
EXTENSIONS
Offset changed by Andrew Howroyd, Aug 09 2024
STATUS
approved