The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A071684 Number of plane trees with n edges and having an odd number of leaves. 2
 1, 1, 2, 7, 22, 66, 212, 715, 2438, 8398, 29372, 104006, 371516, 1337220, 4847208, 17678835, 64823110, 238819350, 883629164, 3282060210, 12233141908, 45741281820, 171529777432, 644952073662, 2430973304732, 9183676536076 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Narayana transform (A001263) of [1, 0, 1, 0, 1, 0, 1,...]. Example: a(4) = 7 = (1, 6, 6, 1) dot (1, 0, 1, 0) = (1 + 0 + 6 + 0). - Gary W. Adamson, Jan 04 2008 LINKS Robert Israel, Table of n, a(n) for n = 1..1668 Yu Hin Au, Some Properties and Combinatorial Implications of Weighted Small SchrÃ¶der Numbers, arXiv:1912.00555 [math.CO], 2019. S. P. Eu, S. C. Liu and Y. N. Yeh, Odd or Even on Plane Trees, Discrete Math. 281 (2004), 189-196. FORMULA a(2*n) = (1/(4*n + 2))*binomial(4*n, 2*n); a(2*n-1) = (1/(4*n))*binomial(4*n-2, 2*n-1) - (-1)^n*(1/(2*n))*binomial(2*n-2, n-1), with n>0. G.f.: 1/4*((1+4*x^2)^(1/2) - (1-4*x)^(1/2)-2*x)/x. - Vladeta Jovovic, Apr 19 2003 a(0)=0; a(n) = Sum_{k = 0..floor(n/2)} (1/n)*C(n,2*k+1)*C(n,2*k) for n>0. - Paul Barry, Jan 25 2007 a(n) = Sum_{k=1..n} (1/n)*C(n,k)*C(n,k-1)*(1-(-1)^k)/2. - Paul Barry, Dec 16 2008 Conjecture: n*(n+1)*(10*n-37)*a(n) + 2*n*(5*n^2-42*n+91)*a(n-1) + 4*(-40*n^3+270*n^2-560*n+357)*a(n-2) + 8*(n-3)*(5*n^2-42*n+91)*a(n-3) - 16*(n-4)*(25*n-51)*(2*n-7)*a(n-4) = 0. - R. J. Mathar, Jul 05 2018 a(n) = (A000108(n) + 2^n * binomial(1/2, (n+1)/2))/2. - Vladimir Reshetnikov, Oct 03 2016 32*n*(2*n+1)*a(n) - 48*(n+2)*(n+1)*a(n+1) + 8*(n^2-n-9)*a(n+2) - 4*(2*n^2+10*n+9)*a(n+3) - 2*(n+5)*(n+6)*a(n+4) + (n+5)*(n+6)*a(n+5) = 0. - Robert Israel, Jul 05 2018 EXAMPLE a(3)=2 because among the 5 plane 3-trees there are 2 trees with odd number of leaves; a(4)=7 because among the 14 plane 4-trees there are 7 trees with odd number of leaves. MAPLE G:=((1+4*x^2)^(1/2)-(1-4*x)^(1/2)-2*x)/4/x: Gser:=series(G, x=0, 30): seq(coeff(Gser, x, n), n=1..26); # Emeric Deutsch, Feb 17 2007 MATHEMATICA a[n_] := If[EvenQ[n], Binomial[2n, n]/(2n + 2), Binomial[2n, n]/(2n + 2) - (-1)^((n + 1)/2)Binomial[n - 1, (n - 1)/2]/(n + 1)] Table[(CatalanNumber[n] + 2^n Binomial[1/2, (n + 1)/2])/2, {n, 20}] (* Vladimir Reshetnikov, Oct 03 2016 *) CROSSREFS a(n) + A071688 = A000108: Catalan numbers. Cf. A001263, A007595. Sequence in context: A084264 A333678 A088211 * A290917 A060816 A171847 Adjacent sequences:  A071681 A071682 A071683 * A071685 A071686 A071687 KEYWORD nonn,easy AUTHOR Sen-peng Eu, Jun 23 2002 EXTENSIONS Edited by Robert G. Wilson v, Jun 25 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 16:22 EST 2020. Contains 338954 sequences. (Running on oeis4.)