login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A071093 Number of perfect matchings in triangle graph with n nodes per side as n runs through numbers congruent to 0 or 3 mod 4. 3
1, 2, 6, 2196, 37004, 2317631400, 216893681800, 2326335506123418128, 1208982377794384163088, 2220650888749669503773432361504, 6408743336016148761893699822360672, 2015895925780490675949731718780144934779733312, 32307672245407537492814937397129549558917000333504 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

REFERENCES

J. Propp, Enumeration of matchings: problems and progress, pp. 255-291 in L. J. Billera et al., eds, New Perspectives in Algebraic Combinatorics, Cambridge, 1999 (see Problem 17).

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..44

J. Propp, Twenty open problems in enumeration of matchings, arXiv:math/9801061 [math.CO], 1998-1999.

J. Propp, Updated article

J. Propp, Enumeration of matchings: problems and progress, in L. J. Billera et al. (eds.), New Perspectives in Algebraic Combinatorics

FORMULA

a(2n) = A039907(4n) = A178446(4n), a(2n+1) = A039907(4n+3) = A178446(4n+3). - Andrew Howroyd, Mar 06 2016

MAPLE

with(LinearAlgebra): b:= proc(n) option remember; local l, ll, i, j, h0, h1, M; if n=0 then return 1 fi; if n<0 or member(irem(n, 4), [1, 2]) then return 0 fi; l:= []; for j from 1 to n-1 do h0:= j*(j-1)/2+1; h1:= j*(j+1)/2+1; for i from 1 to j do l:= [l[], [h1, h1+1]]; if irem(i, 2)=1 then l:= [l[], [h1, h0]]; h1:= h1+1; l:=[l[], [h1, h0]]; h0:=h0+1 else l:= [l[], [h0, h1]]; h1:= h1+1; l:=[l[], [h0, h1]]; h0:=h0+1 fi od od; M:= Matrix((n+1)*n/2); for ll in l do M[ll[1], ll[2]]:= 1; M[ll[2], ll[1]]:= -1 od: isqrt(Determinant(M)); end: a:= n-> b(2*n +irem(n, 2)): seq(a(n), n=0..10); # Alois P. Heinz, May 08 2010

MATHEMATICA

b[n_] := b[n] = Module[{l, ll, i, j, h0, h1, M}, If[n == 0 , Return[1]]; If[n<0 || MatchQ[Mod[n, 4], 1|2] , Return[0]]; l = {}; For[j = 1, j <= n-1, j++, h0 = j*(j-1)/2+1; h1 = j*(j+1)/2+1; For[i = 1, i <= j, i++, AppendTo[l, {h1, h1+1}]; If[Mod[i, 2] == 1, AppendTo[l, {h1, h0}]; h1++; AppendTo[l, {h1, h0}]; h0++ , AppendTo[l, {h0, h1}]; h1++; AppendTo[l, {h0, h1}]; h0++ ]]]; M[_, _] = 0; (M[#[[1]], #[[2]]] = 1; M[#[[2]], #[[1]]] = -1)& /@ l; Sqrt[Det[Array[M, {n*(n+1)/2, n*(n+1)/2}]]]]; a[n_] := b[2*n + Mod[n, 2]]; Table[a[n], {n, 0, 12}] (* Jean-Fran├žois Alcover, Apr 29 2014, after Alois P. Heinz *)

CROSSREFS

Cf. A039907, A178446, A269869.

Sequence in context: A129454 A317251 A140258 * A114045 A116899 A162146

Adjacent sequences:  A071090 A071091 A071092 * A071094 A071095 A071096

KEYWORD

nonn

AUTHOR

N. J. A. Sloane

EXTENSIONS

a(9)-a(10) from Alois P. Heinz, May 08 2010

a(11)-a(12) from Alois P. Heinz, Jan 12 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 24 04:49 EST 2020. Contains 338607 sequences. (Running on oeis4.)