login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A071096 Number of ways to tile hexagon of edges n, n+1, n+2, n, n+1, n+2 with diamonds of side 1. 0
1, 10, 490, 116424, 133613766, 739309710568, 19702998159210080, 2527580342020127455360, 1560172391098377453031770400, 4632518859090968506120863642225000, 66153724447703043353053979949899667187500, 4542776083800437392420665771479758969781250000000, 1499928882906010042230116408158354282455601808812500000000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

REFERENCES

J. Propp, Enumeration of matchings: problems and progress, pp. 255-291 in L. J. Billera et al., eds, New Perspectives in Algebraic Combinatorics, Cambridge, 1999 (see page 261).

LINKS

Table of n, a(n) for n=0..12.

J. Propp, Updated article

J. Propp, Enumeration of matchings: problems and progress, in L. J. Billera et al. (eds.), New Perspectives in Algebraic Combinatorics

FORMULA

Product_{i=0..a-1} Product_{j=0..b-1} Product_{k=0..c-1} (i+j+k+2)/(i+j+k+1) with a=n, b=n+1, c=n+2.

a(n) = (-1)^floor((n+1)/2)*det(M(n+1)) where M(n) is the n X n matrix m(i, j)=C(2n, i+j), with i and j ranging from 1 to n. - Benoit Cloitre, Jan 31 2003

a(n) = (1/2)*Product[Product[Product[(i+j+k-1)/(i+j+k-2),{i,1,n+1}],{j,1,n+1}],{k,1,n+1}]. a(n) = A008793(n+1)/2. - Alexander Adamchuk, Jul 10 2006

a(n) ~ exp(1/12) * 3^(9*n^2/2 + 9*n + 53/12) / (A * n^(1/12) * 2^(6*n^2 + 12*n + 27/4)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Apr 26 2015

MATHEMATICA

Table[Product[Product[Product[(i+j+k-1)/(i+j+k-2), {i, 1, n+1}], {j, 1, n+1}], {k, 1, n+1}], {n, 0, 10}]/2 (* Alexander Adamchuk, Jul 10 2006 *)

PROG

(PARI) {a(n) = abs( matdet( matrix(n, n, i, j, binomial(2*n, i+j))))};

CROSSREFS

Cf. A008793, A071094, A071095.

Sequence in context: A035320 A200458 A223122 * A039835 A293090 A127947

Adjacent sequences:  A071093 A071094 A071095 * A071097 A071098 A071099

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, May 28 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 24 07:33 EST 2020. Contains 338607 sequences. (Running on oeis4.)