login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A039907 Number of matchings in triangle graph with n nodes per side. 3
1, 0, 0, 2, 6, 0, 0, 2196, 37004, 0, 0, 2317631400, 216893681800, 0, 0, 2326335506123418128, 1208982377794384163088, 0, 0, 2220650888749669503773432361504, 6408743336016148761893699822360672, 0, 0, 2015895925780490675949731718780144934779733312 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

REFERENCES

J. Propp, Enumeration of matchings: problems and progress, pp. 255-291 in L. J. Billera et al., eds, New Perspectives in Algebraic Combinatorics, Cambridge, 1999 (see Problem 17).

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..60

J. Propp, Twenty open problems in enumeration of matchings.

J. Propp, Updated article

J. Propp, Enumeration of matchings: problems and progress, in L. J. Billera et al. (eds.), New Perspectives in Algebraic Combinatorics

MAPLE

with(LinearAlgebra): a:= proc(n) option remember; local l, ll, i, j, h0, h1, M; if n=0 then return 1 fi; if n<0 or member(irem(n, 4), [1, 2]) then return 0 fi; l:= []; for j from 1 to n-1 do h0:= j*(j-1)/2+1; h1:= j*(j+1)/2+1; for i from 1 to j do l:= [l[], [h1, h1+1]]; if irem(i, 2)=1 then l:= [l[], [h1, h0]]; h1:= h1+1; l:=[l[], [h1, h0]]; h0:=h0+1 else l:= [l[], [h0, h1]]; h1:= h1+1; l:=[l[], [h0, h1]]; h0:=h0+1 fi od od; M:= Matrix((n+1)*n/2); for ll in l do M[ll[1], ll[2]]:= 1; M[ll[2], ll[1]]:= -1 od: isqrt(Determinant(M)) end: seq(a(n), n=0..20); # Alois P. Heinz, May 08 2010

MATHEMATICA

a[n_] := a[n] = Module[{l, ll, i, j, h0, h1, M}, If[n == 0 , Return[1]]; If[n < 0 || MemberQ[{1, 2}, Mod[n, 4]], Return[0]]; l = {}; For[j = 1, j <= n-1, j++, h0 = j*(j-1)/2+1; h1 = j*(j+1)/2+1; For[i = 1, i <= j, i++, l = Join[l, {h1, h1+1}]; If[Mod [i, 2] == 1, l = Join[l, {h1, h0}]; h1 = h1+1; l = Join[l, {h1, h0}]; h0 = h0+1, l = Join[l, {h0, h1}]; h1 = h1+1; l = Join[l, {h0, h1}]; h0 = h0+1]]]; M[_, _] = 0; Do[M[ll[[1]], ll[[2]]] = 1; M[ll[[2]], ll[[1]]] = -1, {ll, Partition[l, 2]}]; Sqrt[Det[Array[M, {n*(n+1)/2, n*(n+1)/2}]]]]; Table[a[n], {n, 0, 23}] (* Jean-Fran├žois Alcover, Apr 17 2014, after Alois P. Heinz *)

CROSSREFS

Cf. A071093.

Sequence in context: A208279 A186502 A165733 * A072340 A118354 A080730

Adjacent sequences:  A039904 A039905 A039906 * A039908 A039909 A039910

KEYWORD

nonn,changed

AUTHOR

N. J. A. Sloane.

EXTENSIONS

a(17)-a(20) from Alois P. Heinz, May 08 2010

a(21)-a(23) from Alois P. Heinz, Jan 12 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 29 00:06 EST 2014. Contains 250479 sequences.