login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A039904 Number of partitions satisfying 0 < cn(0,5) + cn(1,5) + cn(4,5) + cn(2,5) and 0 < cn(0,5) + cn(1,5) + cn(4,5) + cn(3,5). 1
0, 1, 1, 2, 4, 7, 9, 14, 20, 28, 41, 54, 74, 99, 131, 174, 226, 294, 380, 485, 623, 785, 996, 1249, 1565, 1952, 2425, 3001, 3707, 4553, 5592, 6828, 8334, 10128, 12291, 14866, 17954, 21617, 25991, 31159, 37311, 44554, 53141, 63229, 75137, 89096, 105515, 124711 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

For a given partition cn(i,n) means the number of its parts equal to i modulo n.

Short: o < 0 + 1 + 4 + 2 and o < 0 + 1 + 4 + 3 (OMZBBAAp).

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..1000

MAPLE

b:= proc(n, i, t, s) option remember; `if`(n=0, t*s,

`if`(i<1, 0, b(n, i-1, t, s)+ `if`(i>n, 0,

b(n-i, i, `if`(irem(i, 5)=2, t, 1),

`if`(irem(i, 5)=3, s, 1)))))

end:

a:= n-> b(n$2, 0$2):

seq(a(n), n=0..50); # Alois P. Heinz, Apr 04 2014

MATHEMATICA

b[n_, i_, t_, s_] := b[n, i, t, s] = If[n == 0, t*s, If[i<1, 0, b[n, i-1, t, s] + If[i>n, 0, b[n-i, i, If[Mod[i, 5] == 2, t, 1], If[Mod[i, 5] == 3, s, 1]]]]]; a[n_] := b[n, n, 0, 0]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Dec 23 2015, after Alois P. Heinz *)

CROSSREFS

Sequence in context: A139533 A227116 A180742 * A115162 A278977 A097433

Adjacent sequences: A039901 A039902 A039903 * A039905 A039906 A039907

KEYWORD

nonn

AUTHOR

Olivier Gérard

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 17:25 EST 2022. Contains 358668 sequences. (Running on oeis4.)