login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A071076
Number of permutations that avoid the generalized pattern 123-4.
4
1, 1, 2, 6, 23, 108, 598, 3815, 27532, 221708, 1970251, 19150132, 202064380, 2300071071, 28092017668, 366425723926, 5083645400819, 74745472084176, 1160974832572274, 18995175706664735, 326531476287842760, 5883736110875887560, 110893188848753125475
OFFSET
0,3
LINKS
A. M. Baxter, Algorithms for Permutation Statistics, Ph. D. Dissertation, Rutgers University, May 2011.
Andrew M. Baxter and Lara K. Pudwell, Enumeration schemes for dashed patterns, arXiv preprint arXiv:1108.2642 [math.CO], 2011.
Sergey Kitaev, Partially Ordered Generalized Patterns, preprint.
Sergey Kitaev, Partially Ordered Generalized Patterns, Discrete Math. 298 (2005), no. 1-3, 212-229.
FORMULA
E.g.f.: exp(int(A(y), y=0..x)), where A(y) = (sqrt(3)/2)*exp(y/2)/cos((sqrt(3)/2)*y + Pi/6).
Let b(n) = A049774(n) = number of permutations of [n] that avoid the consecutive pattern 123. Then a(n) = Sum_{i = 0..n-1} binomial(n-1,i)*b(i)*a(n-1-i) with a(0) = b(0) = 1. [See the recurrence for A_n and B_n in the proof of Theorem 13 in Kitaev's papers.] -
MAPLE
b:= proc(u, o, t) option remember; `if`(u+o=0, 1, add(
`if`(t=1 and o>j, 0, b(u+j-1, o-j, t+1)), j=1..o)+
add(b(u-j, o+j-1, 0), j=1..u))
end:
a:= n-> b(n, 0$2):
seq(a(n), n=0..25); # Alois P. Heinz, Nov 14 2015
MATHEMATICA
b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, 1, Sum[If[t == 1 && o > j, 0, b[u + j - 1, o - j, t + 1]], {j, 1, o}] + Sum[b[u - j, o + j - 1, 0], {j, 1, u}]]; a[n_] := b[n, 0, 0]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Feb 01 2016, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Sergey Kitaev, May 26 2002
EXTENSIONS
More terms from Vladeta Jovovic, May 28 2002
Link added by Andrew Baxter, May 17 2011
Typos in formula corrected by Vaclav Kotesovec, Aug 23 2014
STATUS
approved