login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A071076 Number of permutations that avoid the generalized pattern 123-4. 4
1, 1, 2, 6, 23, 108, 598, 3815, 27532, 221708, 1970251, 19150132, 202064380, 2300071071, 28092017668, 366425723926, 5083645400819, 74745472084176, 1160974832572274, 18995175706664735, 326531476287842760, 5883736110875887560, 110893188848753125475 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..450

A. M. Baxter, Algorithms for Permutation Statistics, Ph. D. Dissertation, Rutgers University, May 2011.

Andrew M. Baxter and Lara K. Pudwell, Enumeration schemes for dashed patterns, arXiv preprint arXiv:1108.2642 [math.CO], 2011.

Sergey Kitaev, Partially Ordered Generalized Patterns, preprint.

Sergey Kitaev, Partially Ordered Generalized Patterns, Discrete Math. 298 (2005), no. 1-3, 212-229.

FORMULA

E.g.f.: exp(int(A(y), y=0..x)), where A(y) = (sqrt(3)/2)*exp(y/2)/cos((sqrt(3)/2)*y + Pi/6).

Let b(n) = A049774(n) = number of permutations of [n] that avoid the consecutive pattern 123. Then a(n) = Sum_{i = 0..n-1} binomial(n-1,i)*b(i)*a(n-1-i) with a(0) = b(0) = 1. [See the recurrence for A_n and B_n in the proof of Theorem 13 in Kitaev's papers.] -

MAPLE

b:= proc(u, o, t) option remember; `if`(u+o=0, 1, add(

      `if`(t=1 and o>j, 0, b(u+j-1, o-j, t+1)), j=1..o)+

       add(b(u-j, o+j-1, 0), j=1..u))

    end:

a:= n-> b(n, 0$2):

seq(a(n), n=0..25);  # Alois P. Heinz, Nov 14 2015

MATHEMATICA

b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, 1, Sum[If[t == 1 && o > j, 0, b[u + j - 1, o - j, t + 1]], {j, 1, o}] + Sum[b[u - j, o + j - 1, 0], {j, 1, u}]]; a[n_] := b[n, 0, 0]; Table[a[n], {n, 0, 25}] (* Jean-Fran├žois Alcover, Feb 01 2016, after Alois P. Heinz *)

CROSSREFS

Cf. A049774, A071088, A071075, A071077.

Sequence in context: A007555 A101053 A155857 * A297196 A112501 A093345

Adjacent sequences:  A071073 A071074 A071075 * A071077 A071078 A071079

KEYWORD

nonn

AUTHOR

Sergey Kitaev (kitaev(AT)math.chalmers.se), May 26 2002

EXTENSIONS

More terms from Vladeta Jovovic, May 28 2002

Link added by Andrew Baxter, May 17 2011

Typos in formula corrected by Vaclav Kotesovec, Aug 23 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 5 18:27 EDT 2022. Contains 357261 sequences. (Running on oeis4.)