The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A101053 a(n) = n! * Sum_{k=0..n} Bell(k)/k! (cf. A000110). 8
 1, 2, 6, 23, 107, 587, 3725, 26952, 219756, 1998951, 20105485, 221838905, 2666280457, 34689290378, 485840964614, 7288997427755, 116634438986227, 1982868327635663, 35692311974248093, 678159760252918824, 13563246929216611852, 284828660383365005643 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Sequence was originally defined as an infinite sum involving generalized Laguerre polynomials: a(n) = ((-1)^n*n!/exp(1))*Sum_{k>=0} LaguerreL(n,-n-1,k)/k!, n=0,1... . It appears in the problem of normal ordering of functions of boson operators. a(n) is the number of ways to linearly order the elements in a (possibly empty) subset S of {1,2,...,n} and then partition the complement of S. - Geoffrey Critzer, Aug 07 2015 LINKS Robert Israel, Table of n, a(n) for n = 0..450 FORMULA E.g.f: exp(exp(x)-1)/(1-x). a(n) ~ exp(exp(1)-1) * n!. - Vaclav Kotesovec, Jun 26 2022 a(0) = 1; a(n) = Sum_{k=1..n} ((k-1)! + 1) * binomial(n-1,k-1) * a(n-k). - Seiichi Manyama, Jul 14 2022 MAPLE with(combinat): a:=n->add(bell(j)*n!/j!, j=0..n): seq(a(n), n=0..20); # Zerinvary Lajos, Mar 19 2007 MATHEMATICA nn = 21; Range[0, nn]! CoefficientList[Series[Exp[(Exp[x]-1)]/(1-x), {x, 0, nn}], x] (* Geoffrey Critzer, Aug 07 2015 *) PROG (PARI) egf(s)=my(v=Vec(s), i); while(polcoeff(s, i)==0, i++); i--; vector(i+#v, j, polcoeff(s, j+i)*(j+i)!) egf(exp(exp(x)-1)/(1-x)) \\ Charles R Greathouse IV, Aug 07 2015 (PARI) my(x='x+O('x^30)); Vec(serlaplace( exp(exp(x)-1)/(1-x) )) \\ G. C. Greubel, Mar 31 2019 (PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, ((j-1)!+1)*binomial(i-1, j-1)*v[i-j+1])); v; \\ Seiichi Manyama, Jul 14 2022 (Magma) m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(Exp(x)-1)/(1-x) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Mar 31 2019 (Sage) m = 30; T = taylor(exp(exp(x)-1)/(1-x), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, Mar 31 2019 CROSSREFS Cf. A000110, A186755, A278677, A352270. Sequence in context: A113226 A071075 A007555 * A155857 A071076 A297196 Adjacent sequences: A101050 A101051 A101052 * A101054 A101055 A101056 KEYWORD nonn AUTHOR Karol A. Penson, Nov 29 2004 EXTENSIONS New definition from Vladeta Jovovic, Dec 01 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 9 16:57 EST 2022. Contains 358701 sequences. (Running on oeis4.)