login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A101053 a(n) = n! * Sum_{k=0..n} Bell(k)/k! (cf. A000110). 8
1, 2, 6, 23, 107, 587, 3725, 26952, 219756, 1998951, 20105485, 221838905, 2666280457, 34689290378, 485840964614, 7288997427755, 116634438986227, 1982868327635663, 35692311974248093, 678159760252918824, 13563246929216611852, 284828660383365005643 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Sequence was originally defined as an infinite sum involving generalized Laguerre polynomials: a(n) = ((-1)^n*n!/exp(1))*Sum_{k>=0} LaguerreL(n,-n-1,k)/k!, n=0,1... . It appears in the problem of normal ordering of functions of boson operators.

a(n) is the number of ways to linearly order the elements in a (possibly empty) subset S of {1,2,...,n} and then partition the complement of S. - Geoffrey Critzer, Aug 07 2015

LINKS

Robert Israel, Table of n, a(n) for n = 0..450

FORMULA

E.g.f: exp(exp(x)-1)/(1-x).

a(n) ~ exp(exp(1)-1) * n!. - Vaclav Kotesovec, Jun 26 2022

a(0) = 1; a(n) = Sum_{k=1..n} ((k-1)! + 1) * binomial(n-1,k-1) * a(n-k). - Seiichi Manyama, Jul 14 2022

MAPLE

with(combinat): a:=n->add(bell(j)*n!/j!, j=0..n): seq(a(n), n=0..20); # Zerinvary Lajos, Mar 19 2007

MATHEMATICA

nn = 21; Range[0, nn]! CoefficientList[Series[Exp[(Exp[x]-1)]/(1-x), {x, 0, nn}], x] (* Geoffrey Critzer, Aug 07 2015 *)

PROG

(PARI) egf(s)=my(v=Vec(s), i); while(polcoeff(s, i)==0, i++); i--; vector(i+#v, j, polcoeff(s, j+i)*(j+i)!)

egf(exp(exp(x)-1)/(1-x)) \\ Charles R Greathouse IV, Aug 07 2015

(PARI) my(x='x+O('x^30)); Vec(serlaplace( exp(exp(x)-1)/(1-x) )) \\ G. C. Greubel, Mar 31 2019

(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, ((j-1)!+1)*binomial(i-1, j-1)*v[i-j+1])); v; \\ Seiichi Manyama, Jul 14 2022

(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(Exp(x)-1)/(1-x) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Mar 31 2019

(Sage) m = 30; T = taylor(exp(exp(x)-1)/(1-x), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, Mar 31 2019

CROSSREFS

Cf. A000110, A186755, A278677, A352270.

Sequence in context: A113226 A071075 A007555 * A155857 A071076 A297196

Adjacent sequences: A101050 A101051 A101052 * A101054 A101055 A101056

KEYWORD

nonn

AUTHOR

Karol A. Penson, Nov 29 2004

EXTENSIONS

New definition from Vladeta Jovovic, Dec 01 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 9 16:57 EST 2022. Contains 358701 sequences. (Running on oeis4.)