login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A071088
Number of permutations that avoid the generalized pattern 12345-6.
4
1, 1, 2, 6, 24, 120, 719, 5022, 40064, 359400, 3580896, 39233867, 468818397, 6067548429, 84551873634, 1262188317534, 20095114167065, 339883289813330, 6086154606429378, 115025120586250896, 2288119443771888504, 47787869441095495395, 1045507132393256095282
OFFSET
0,3
LINKS
Sergey Kitaev, Partially Ordered Generalized Patterns, preprint.
Sergey Kitaev, Partially Ordered Generalized Patterns, Discrete Math. 298 (2005), no. 1-3, 212-229.
FORMULA
E.g.f.: exp(int(A(y), y=0..x)), where A(y) = 1/(Sum_{i>=0} y^{5*i}/(5*i)! - Sum_{i>=0} y^{5*i+1}/(5*i+1)!).
Let b(n) = A177523(n) = number of permutations of [n] that avoid the consecutive pattern 12345. Then a(n) = Sum_{i = 0..n-1} binomial(n-1,i)*b(i)*a(n-1-i) with a(0) = b(0) = 1. [See the recurrence for A_n and B_n in the proof of Theorem 13 in Kitaev's papers.] - Petros Hadjicostas, Nov 01 2019
MAPLE
b:= proc(u, o, t) option remember; `if`(u+o=0, 1, add(
`if`(t=3 and o>j, 0, b(u+j-1, o-j, t+1)), j=1..o)+
add(b(u-j, o+j-1, 0), j=1..u))
end:
a:= n-> b(n, 0$2):
seq(a(n), n=0..25); # Alois P. Heinz, Nov 14 2015
MATHEMATICA
b[u_, o_, t_] := b[u, o, t] = If[u+o == 0, 1, Sum[If[t == 3 && o > j, 0, b[u+j-1, o-j, t+1]], {j, 1, o}] + Sum[b[u-j, o+j-1, 0], {j, 1, u}]];
a[n_] := b[n, 0, 0];
a /@ Range[0, 25] (* Jean-François Alcover, Nov 02 2020, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Sergey Kitaev, May 26 2002
EXTENSIONS
More terms from Vladeta Jovovic, May 28 2002
STATUS
approved