OFFSET
0,3
COMMENTS
Permutations on n letters without double falls. A permutation w has a double fall at k if w(k) > w(k+1) > w(k+2) and has an initial fall if w(1) > w(2).
Hankel transform is A055209. - Paul Barry, Jan 12 2009
Increasing colored 1-2 trees of order n with choice of two colors for the right branches of the vertices of outdegree 2 except those vertices on the path from the root to the leftmost leaf. - Wenjin Woan, May 21 2011
REFERENCES
F. N. David and D. E. Barton, Combinatorial Chance, Hafner, New York, 1962, pp. 156-157.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, (5.2.17).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..464 (first 201 terms from Ray Chandler)
Martin Aigner, Catalan and other numbers: a recurrent theme, in Algebraic Combinatorics and Computer Science, a Tribute to Gian-Carlo Rota, pp.347-390, Springer, 2001.
Juan S. Auli, Pattern Avoidance in Inversion Sequences, Ph. D. thesis, Dartmouth College, ProQuest Dissertations Publishing (2020), 27964164.
Juan S. Auli, Sergi Elizalde, Consecutive Patterns in Inversion Sequences, arXiv:1904.02694 [math.CO], 2019. See Table 1.
Paul Barry, Constructing Exponential Riordan Arrays from Their A and Z Sequences, Journal of Integer Sequences, 17 (2014), #14.2.6.
Paul Barry, On a transformation of Riordan moment sequences, arXiv:1802.03443 [math.CO], 2018.
Nicolas Basset, Counting and generating permutations using timed languages, HAL Id: hal-00820373, 2013.
A. Baxter, B. Nakamura, and D. Zeilberger. Automatic generation of theorems and proofs on enumerating consecutive Wilf-classes; Local copy [Pdf file only, no active links].
S. Elizalde, Asymptotic enumeration of permutations avoiding generalized patterns arXiv:math/0505254 [math.CO], 2015.
S. Elizalde and M. Noy, Consecutive patterns in permutations, Adv. Appl. Math. 30 (2003), 110-123.
Steven Finch, Pattern-Avoiding Permutations [Archived version]
Steven Finch, Pattern-Avoiding Permutations [Cached copy, with permission]
Ira M. Gessel and Yan Zhuang, Counting permutations by alternating descents , arXiv:1408.1886 [math.CO], 2014. See Eq. (3). - N. J. A. Sloane, Aug 11 2014
Kaarel Hänni, Asymptotics of descent functions, arXiv:2011.14360 [math.CO], Nov 29 2020, p. 14.
Mingjia Yang and Doron Zeilberger, Increasing Consecutive Patterns in Words, arXiv:1805.06077 [math.CO], 2018.
Christopher Zhu, Enumerating Permutations and Rim Hooks Characterized by Double Descent Sets, arXiv:1910.12818 [math.CO], 2019.
FORMULA
E.g.f.: 1/Sum_{i>=0} (x^(3*i)/(3*i)! - x^(3*i+1)/(3*i+1)!). [Corrected g.f. --> e.g.f. by Vaclav Kotesovec, Feb 15 2015]
Equivalently, e.g.f.: exp(x/2) * r / sin(r*x + (2/3)*Pi) where r = sqrt(3)/2. This has simple poles at (3*m+1)*x0 where x0 = Pi/sqrt(6.75) = 1.2092 approximately and m is an arbitrary integer. This yields the asymptotic expansion a(n)/n! ~ x0^(-n-1) * Sum((-1)^m * E^(3*m+1) / (3*m+1)^(n+1)) where E = exp(x0/2) = 1.8305+ and m ranges over all integers. - Noam D. Elkies, Nov 15 2001
E.g.f.: sqrt(3)*exp(x/2)/(sqrt(3)*cos(x*sqrt(3)/2) - sin(x*sqrt(3)/2) ); a(n+1) = Sum_{k=0..n} binomial(n, k)*a(k)*b(n-k) where b(n) = number of n-permutations without double falls and without initial falls. - Emanuele Munarini, Feb 28 2003
O.g.f.: A(x) = 1/(1 - x - x^2/(1 - 2*x - 4*x^2/(1 - 3*x - 9*x^2/(1 - ... - n*x - n^2*x^2/(1 - ...))))) (continued fraction). - Paul D. Hanna, Jan 17 2006
a(n) = leftmost column term of M^n*V, where M = an infinite tridiagonal matrix with (1,2,3,...) in the super, sub, and main diagonals and the rest zeros. V = the vector [1,0,0,0,...]. - Gary W. Adamson, Jun 16 2011
E.g.f.: A(x)=1/Q(0); Q(k)=1-x/((3*k+1)-(x^2)*(3*k+1)/((x^2)-3*(3*k+2)*(k+1)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, Nov 25 2011
a(n) ~ n! * exp(Pi/(3*sqrt(3))) * (3*sqrt(3)/(2*Pi))^(n+1). - Vaclav Kotesovec, Jul 28 2013
E.g.f.: T(0)/(1-x), where T(k) = 1 - x^2*(k+1)^2/( x^2*(k+1)^2 - (1-x-x*k)*(1-2*x-x*k)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 17 2013
EXAMPLE
Permutations without double increase and without pattern 123:
a(3) = 5: 132, 213, 231, 312, 321.
a(4) = 17: 1324, 1423, 1432, 2143, 2314, 2413, 2431, 3142, 3214, 3241, 3412, 3421, 4132, 4213, 4231, 4312, 4321.
MAPLE
b:= proc(u, o, t) option remember;
`if`(u+o=0, 1, add(b(u-j, o+j-1, 0), j=1..u)+
`if`(t=1, 0, add(b(u+j-1, o-j, 1), j=1..o)))
end:
a:= n-> b(n, 0$2):
seq(a(n), n=0..23); # Alois P. Heinz, Nov 04 2021
MATHEMATICA
Table[Simplify[ n! SeriesCoefficient[ Series[ Sqrt[3] Exp[x/2]/(Sqrt[3] Cos[Sqrt[3]/2 x] - Sin[Sqrt[3]/2 x]), {x, 0, n}], n] ], {n, 0, 40}]
(* Second program: *)
b[u_, o_, t_, k_] := b[u, o, t, k] = If[t == k, (u + o)!, If[Max[t, u] + o < k, 0, Sum[b[u + j - 1, o - j, t + 1, k], {j, 1, o}] + Sum[b[u - j, o + j - 1, 1, k], {j, 1, u}]]];
a[n_] := b[0, n, 0, 2] - b[0, n, 0, 3] + 1;
CROSSREFS
KEYWORD
nonn,nice,easy
AUTHOR
Tuwani A. Tshifhumulo (tat(AT)caddy.univen.ac.za)
EXTENSIONS
Corrected and extended by Vladeta Jovovic, Apr 14 2001
STATUS
approved