This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A049775 a(n) is the sum of all integers from 2^(n-2)+1 to 2^(n-1). 9
 2, 7, 26, 100, 392, 1552, 6176, 24640, 98432, 393472, 1573376, 6292480, 25167872, 100667392, 402661376, 1610629120, 6442483712, 25769869312, 103079346176, 412317122560, 1649267965952, 6597070815232, 26388281163776 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,1 COMMENTS Name when submitted : Sum of even-indexed terms of n-th row of array T given by A049773 (From Clark Kimberling). Also sum of integers of which the binary order [A029837] is n: a(n) = Sum[x | Ceiling[Log[2,x]] = n ]. E.g.a(7) = 6176 = Apply[Plus, Table[w,{w,65,128}]]. This sequence may be obtained by filling a complete binary tree left-to-right, row by row with the integers onwards from 2 and then collecting the sums of the rows e.g. 2, 3+4, 5+6+7+8, 9+10+11+12+13+14+15+16, etc. a(n) is then equal to the sum of row n-1. - Carl R. White, Aug 19 2003 If the offset is set to zero, the inverse Binomial transform gives A007051 without its leading 1. [From R. J. Mathar, Mar 26 2009] LINKS Index entries for linear recurrences with constant coefficients, signature (6, -8). FORMULA a(n) = 2^(n-3)[3*2^(n-2)+1] - Carl R. White, Aug 19 2003 a(n+1) = 4*a(n) - 2^(n-2); see also A007582 . a(n+1) = 2^(n-2)*A004119(n) . - Philippe Deléham, Feb 20 2004 a(n)=6*a(n-1)-8*a(n-2). G.f.: -x^2*(-2+5*x)/((4*x-1)*(2*x-1)). [From R. J. Mathar, Mar 26 2009] EXAMPLE a(2)= 2 = 2. a(3)= 7 = 3+4. a(4)=26 = 5+6+7+8. .. MATHEMATICA LinearRecurrence[{6, -8}, {2, 7}, 30] (* Harvey P. Dale, Mar 04 2013 *) CROSSREFS Cf. A049773 (sequence motivating the original definition). Cf. A049775(n+2) = A007582(n+1)-A007582(n). Cf. A029837, A003070. Sequence in context: A126223 A273320 A114121 * A101850 A279002 A176280 Adjacent sequences:  A049772 A049773 A049774 * A049776 A049777 A049778 KEYWORD nonn AUTHOR EXTENSIONS More terms from Michael Somos. Name change by Olivier Gérard, Oct 24 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 19 16:57 EDT 2018. Contains 300868 sequences. (Running on oeis4.)