login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A069835 Define an array as follows: b(i,0)=b(0,j)=1, b(i,j)=2*b(i-1,j-1)+b(i-1,j)+b(i,j-1). Then a(n)=b(n,n). 11
1, 4, 22, 136, 886, 5944, 40636, 281488, 1968934, 13875544, 98365972, 700701808, 5011371964, 35961808432, 258805997752, 1867175631136, 13500088649734, 97794850668952, 709626281415076, 5157024231645616, 37528209137458516, 273431636191026064, 1994448720786816712 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

2^n*LegendreP(n,k) yields the central coefficients of (1+2kx+(k^2-1)x^2)^n, with g.f. 1/sqrt(1-4kx+4x^2) and e.g.f. exp(2kx)BesselI(0,2sqrt(k^2-1)x). - Paul Barry, May 25 2005

Number of Delannoy paths from (0,0) to (n,n) with steps U(0,1), H(1,0) and D(1,1) where D can have two colors. - Paul Barry, May 25 2005

Also number of paths from (0,0) to (n,0) using steps U=(1,1), H=(1,0) and D=(1,-1), the U steps can have three colors and H steps can have four colors. - N-E. Fahssi, Mar 31 2008

Number of lattice paths from (0,0) to (n,n) using steps (1,0), (0,1), and two kinds of steps (1,1). - Joerg Arndt, Jul 01 2011

Hankel transform is 2^n*3^C(n+1,2)=(-1)^C(n+1,2)*A127946(n). - Paul Barry, Jan 24 2011

Central terms of triangle A152842. - Reinhard Zumkeller, May 01 2014

LINKS

Arkadiusz Wesolowski, Table of n, a(n) for n = 0..250

Paul Barry and Aoife Hennessy, Generalized Narayana Polynomials, Riordan Arrays, and Lattice Paths, Journal of Integer Sequences, Vol. 15, 2012, #12.4.8. - N. J. A. Sloane, Oct 08 2012

Tony D. Noe, On the Divisibility of Generalized Central Trinomial Coefficients, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.7.

FORMULA

a(n) = 2^n*LegendreP(n, 2) = 2^n*hypergeom([ -n, n+1], [1], -1/2) = 2^n*GegenbauerC(n, 1/2, 2) = Sum_{k=0..n} 3^k*binomial(n, k)^2. Recurrence: a(n) = 4*(2*n-1)/n*a(n-1)-4*(n-1)/n*a(n-2). G.f.: 1/sqrt(1-8*x+4*x^2). - Vladeta Jovovic, May 13 2003

a(n) = central coefficient of (1+4*x+3*x^2)^n. - Paul D. Hanna, Jun 03 2003

E.g.f.: exp(4*x)*Bessel_I(0, 2*sqrt(3)*x). - Paul Barry, Sep 20 2004

a(n) = sum(k=0..floor(n/2), C(n, k)*C(2*(n-k), n)*(-1)^k*2^(n-2*k) ). - Paul Barry, May 25 2005

a(n) = sum(k=0..n, C(n, k)*C(n+k, k)*2^(n-k) ). - Paul Barry, May 25 2005

a(n) = sum(k=0..n, C(n, k)^2*3^k ). - Paul Barry, Oct 15 2005

G.f.: 1/(1-4x-6x^2/(1-4x-3x^2/(1-4x-3x^2/(1-4x-3x^2/(1-... (continued fraction). - Paul Barry Jan 24 2011

Asymptotic: a(n) ~ sqrt(1/2+1/sqrt(3))*(1+sqrt(3))^(2*n)/sqrt(Pi*n). - Vaclav Kotesovec, Sep 11 2012

EXAMPLE

The array b is a rewriting of A081577:

1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,..

1,  4,  7, 10, 13, 16, 19, 22, 25, 28, 31,...

1,  7, 22, 46, 79,121,172,232,301,379,466,...

1, 10, 46,136,307,586,1000,1576,2341,3322,4546,...

1, 13, 79,307,886,2086,4258,7834,13327,21331,32521,...

MATHEMATICA

Table[Hypergeometric2F1[-n, -n, 1, 3], {n, 0, 21}] (* Arkadiusz Wesolowski, Aug 13 2012 *)

PROG

(PARI) a(n)=sum(k=0, n, binomial(n, k)^2*3^k)

(PARI) {a(n)=if(n<0, 0, polcoeff((1+4*x+3*x^2)^n, n))}

(PARI) /* as lattice paths: same as in A092566 but use */

steps=[[1, 0], [0, 1], [1, 1], [1, 1]];  /* note the double [1, 1] */

\\ Joerg Arndt, Jul 01 2011

(Haskell)

a069835 n = a081577 (2 * n) n  -- Reinhard Zumkeller, Mar 16 2014

CROSSREFS

Cf. A001850.

Sequence in context: A183281 A067120 A143648 * A007196 A091638 A142984

Adjacent sequences:  A069832 A069833 A069834 * A069836 A069837 A069838

KEYWORD

easy,nonn

AUTHOR

Benoit Cloitre, May 03 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 19 20:36 EST 2014. Contains 252239 sequences.